nanochat561 / modeling_nanochat.py
HarleyCooper's picture
chore: restore custom modeling
48373f2 verified
raw
history blame
13.6 kB
"""
Hugging Face-compatible nanochat Transformer implementation.
This file mirrors the architecture used during training (RoPE, RMSNorm,
multi-query attention, relu^2 MLP, untied embeddings, logits softcap) while
presenting the familiar `PreTrainedModel` interface so that checkpoints can be
served directly from the Hugging Face Hub.
"""
from __future__ import annotations
import math
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers import AutoConfig, AutoModelForCausalLM
logger = logging.get_logger(__name__)
class NanoChatConfig(PretrainedConfig):
model_type = "nanochat"
def __init__(
self,
vocab_size=65536,
sequence_len=2048,
n_layer=20,
n_head=10,
n_kv_head=10,
n_embd=1280,
rotary_dim=None,
activation_function="relu_squared",
use_rope=True,
use_qk_norm=True,
tie_word_embeddings=False,
softcap=15.0,
bos_token_id=1,
eos_token_id=1,
pad_token_id=None,
**kwargs,
):
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.sequence_len = sequence_len
self.n_layer = n_layer
self.n_head = n_head
self.n_kv_head = n_kv_head
self.n_embd = n_embd
self.rotary_dim = rotary_dim or (n_embd // n_head)
self.activation_function = activation_function
self.use_rope = use_rope
self.use_qk_norm = use_qk_norm
self.tie_word_embeddings = tie_word_embeddings
self.softcap = softcap
# Aliases for transformers compatibility
self.num_hidden_layers = n_layer
self.hidden_size = n_embd
self.num_attention_heads = n_head
self.num_key_value_heads = n_kv_head
def rms_norm(x: Tensor) -> Tensor:
return F.rms_norm(x, (x.size(-1),))
def relu_squared(x: Tensor) -> Tensor:
return F.relu(x) ** 2
def rotate_half(x: Tensor) -> Tensor:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_emb(q: Tensor, k: Tensor, cos: Tensor, sin: Tensor) -> Tuple[Tensor, Tensor]:
q = (q * cos) + (rotate_half(q) * sin)
k = (k * cos) + (rotate_half(k) * sin)
return q, k
def repeat_kv(x: Tensor, n_rep: int) -> Tensor:
if n_rep == 1:
return x
b, n_kv_heads, seq_len, head_dim = x.shape
x = x[:, :, None, :, :].expand(b, n_kv_heads, n_rep, seq_len, head_dim)
return x.reshape(b, n_kv_heads * n_rep, seq_len, head_dim)
class NanoChatAttention(nn.Module):
def __init__(self, config: NanoChatConfig):
super().__init__()
self.config = config
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head
self.head_dim = config.n_embd // config.n_head
if config.n_embd % config.n_head != 0:
raise ValueError("Embedding dimension must be divisible by number of heads")
self.q_proj = nn.Linear(config.n_embd, self.n_head * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.out_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
def forward(
self,
hidden_states: Tensor,
cos: Tensor,
sin: Tensor,
past_key_value: Optional[Tuple[Tensor, Tensor]] = None,
use_cache: bool = False,
) -> Tuple[Tensor, Optional[Tuple[Tensor, Tensor]]]:
bsz, q_len, _ = hidden_states.shape
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = query.view(bsz, q_len, self.n_head, self.head_dim).transpose(1, 2)
key = key.view(bsz, q_len, self.n_kv_head, self.head_dim).transpose(1, 2)
value = value.view(bsz, q_len, self.n_kv_head, self.head_dim).transpose(1, 2)
query, key = apply_rotary_emb(query, key, cos, sin)
if self.config.use_qk_norm:
query = rms_norm(query)
key = rms_norm(key)
if past_key_value is not None:
past_k, past_v = past_key_value
if past_k is not None and past_v is not None:
key = torch.cat([past_k, key], dim=2)
value = torch.cat([past_v, value], dim=2)
present = (key, value) if use_cache else None
key_for_scores = repeat_kv(key, self.n_head // self.n_kv_head)
value_for_scores = repeat_kv(value, self.n_head // self.n_kv_head)
attn_scores = torch.matmul(query, key_for_scores.transpose(-1, -2)) / math.sqrt(self.head_dim)
attn_scores = attn_scores.to(torch.float32)
# causal mask that accounts for the prefix introduced by past key values
if attn_scores.size(-1) != q_len:
total_k = attn_scores.size(-1)
past_len = total_k - q_len
mask = torch.arange(total_k, device=attn_scores.device)
causal = mask.unsqueeze(0) <= (mask.new_tensor(past_len) + torch.arange(q_len, device=mask.device).unsqueeze(1))
attn_scores = attn_scores.masked_fill(~causal, torch.finfo(attn_scores.dtype).min)
else:
mask = torch.triu(torch.ones((q_len, q_len), device=attn_scores.device, dtype=torch.bool), diagonal=1)
attn_scores = attn_scores.masked_fill(mask, torch.finfo(attn_scores.dtype).min)
attn_weights = F.softmax(attn_scores, dim=-1, dtype=torch.float32)
attn_output = torch.matmul(attn_weights, value_for_scores).to(value_for_scores.dtype)
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
return attn_output, present
class NanoChatMLP(nn.Module):
def __init__(self, config: NanoChatConfig):
super().__init__()
hidden_dim = config.n_embd * 4
self.fc = nn.Linear(config.n_embd, hidden_dim, bias=False)
self.proj = nn.Linear(hidden_dim, config.n_embd, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.proj(relu_squared(self.fc(x)))
class NanoChatBlock(nn.Module):
def __init__(self, config: NanoChatConfig):
super().__init__()
self.attn = NanoChatAttention(config)
self.mlp = NanoChatMLP(config)
def forward(
self,
x: Tensor,
cos: Tensor,
sin: Tensor,
past_key_value: Optional[Tuple[Tensor, Tensor]] = None,
use_cache: bool = False,
) -> Tuple[Tensor, Optional[Tuple[Tensor, Tensor]]]:
residual = x
attn_input = rms_norm(x)
attn_output, present = self.attn(attn_input, cos, sin, past_key_value, use_cache)
x = residual + attn_output
mlp_input = rms_norm(x)
x = x + self.mlp(mlp_input)
return x, present
class NanoChatModel(nn.Module):
def __init__(self, config: NanoChatConfig):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.blocks = nn.ModuleList([NanoChatBlock(config) for _ in range(config.n_layer)])
self.softcap = config.softcap
self._rope_cache: Optional[Tuple[Tensor, Tensor]] = None
self._rope_cache_length = 0
def _build_rope_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> Tuple[Tensor, Tensor]:
if self._rope_cache is not None and self._rope_cache_length >= seq_len and self._rope_cache[0].device == device:
return self._rope_cache
head_dim = self.config.n_embd // self.config.n_head
theta = 10000.0 ** (-torch.arange(0, head_dim, 2, device=device, dtype=torch.float32) / head_dim)
position_ids = torch.arange(seq_len, device=device, dtype=torch.float32)
freqs = torch.einsum("i,j->ij", position_ids, theta)
cos = freqs.cos()[None, None, :, :]
sin = freqs.sin()[None, None, :, :]
# Expand to full head_dim (from head_dim/2 to head_dim)
cos = torch.repeat_interleave(cos, repeats=2, dim=-1)
sin = torch.repeat_interleave(sin, repeats=2, dim=-1)
cos = cos.to(dtype=dtype)
sin = sin.to(dtype=dtype)
self._rope_cache = (cos, sin)
self._rope_cache_length = seq_len
return cos, sin
def forward(
self,
input_ids: Tensor,
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
attention_mask: Optional[Tensor] = None,
labels: Optional[Tensor] = None,
use_cache: bool = False,
) -> Tuple[Tensor, Optional[Tuple[Tuple[Tensor, Tensor], ...]]]:
del attention_mask # attention masking is handled implicitly via causal masking
bsz, seq_len = input_ids.shape
device = input_ids.device
dtype = self.embed_tokens.weight.dtype
inputs_embeds = self.embed_tokens(input_ids)
x = inputs_embeds
past_key_values = past_key_values or tuple([None] * len(self.blocks))
# Handle DynamicCache which may have (None, None) tuples
past_length = 0
if past_key_values and past_key_values[0] is not None:
if past_key_values[0][0] is not None:
past_length = past_key_values[0][0].size(2)
cos_full, sin_full = self._build_rope_cache(seq_len + past_length, device, dtype)
cos = cos_full[:, :, past_length:, :]
sin = sin_full[:, :, past_length:, :]
new_past_key_values = [] if use_cache else None
for layer, block in enumerate(self.blocks):
past = past_key_values[layer] if past_key_values[layer] is not None else None
x, present = block(x, cos, sin, past, use_cache)
if use_cache:
new_past_key_values.append(present)
x = rms_norm(x)
logits = self.lm_head(x)
if self.softcap is not None and self.softcap > 0:
logits = self.softcap * torch.tanh(logits / self.softcap)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)
return logits, loss, tuple(new_past_key_values) if use_cache else None
class NanoChatForCausalLM(PreTrainedModel):
config_class = NanoChatConfig
base_model_prefix = "model"
supports_gradient_checkpointing = False
def __init__(self, config: NanoChatConfig):
super().__init__(config)
self.model = NanoChatModel(config)
if config.tie_word_embeddings:
self.tie_weights()
def get_input_embeddings(self) -> nn.Embedding:
return self.model.embed_tokens
def set_input_embeddings(self, value: nn.Embedding) -> None:
self.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Linear:
return self.model.lm_head
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.model.lm_head = new_embeddings
def prepare_inputs_for_generation(
self,
input_ids: Tensor,
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache", True)}
def _reorder_cache(self, past_key_values, beam_idx):
reordered = []
for layer_past in past_key_values:
reordered.append(
(
layer_past[0].index_select(0, beam_idx),
layer_past[1].index_select(0, beam_idx),
)
)
return tuple(reordered)
def forward(
self,
input_ids: Tensor,
attention_mask: Optional[Tensor] = None,
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
labels: Optional[Tensor] = None,
use_cache: bool = False,
**kwargs,
) -> CausalLMOutputWithPast:
logits, loss, new_past = self.model(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
labels=labels,
use_cache=use_cache,
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=new_past,
)
try:
AutoConfig.register("nanochat", NanoChatConfig)
except ValueError:
# Transformers build already provides this registration (e.g., nanochat branch); reuse it.
pass
try:
AutoModelForCausalLM.register(NanoChatConfig, NanoChatForCausalLM)
except ValueError:
pass