|
|
"""
|
|
|
Hugging Face-compatible nanochat Transformer implementation.
|
|
|
|
|
|
This file mirrors the architecture used during training (RoPE, RMSNorm,
|
|
|
multi-query attention, relu^2 MLP, untied embeddings, logits softcap) while
|
|
|
presenting the familiar `PreTrainedModel` interface so that checkpoints can be
|
|
|
served directly from the Hugging Face Hub.
|
|
|
"""
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
|
|
import math
|
|
|
from typing import Optional, Tuple, Union
|
|
|
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.nn.functional as F
|
|
|
from torch import Tensor
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
|
from transformers.utils import logging
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
class NanoChatConfig(PretrainedConfig):
|
|
|
model_type = "nanochat"
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
vocab_size=65536,
|
|
|
sequence_len=2048,
|
|
|
n_layer=20,
|
|
|
n_head=10,
|
|
|
n_kv_head=10,
|
|
|
n_embd=1280,
|
|
|
rotary_dim=None,
|
|
|
activation_function="relu_squared",
|
|
|
use_rope=True,
|
|
|
use_qk_norm=True,
|
|
|
tie_word_embeddings=False,
|
|
|
softcap=15.0,
|
|
|
bos_token_id=1,
|
|
|
eos_token_id=1,
|
|
|
pad_token_id=None,
|
|
|
**kwargs,
|
|
|
):
|
|
|
super().__init__(
|
|
|
bos_token_id=bos_token_id,
|
|
|
eos_token_id=eos_token_id,
|
|
|
pad_token_id=pad_token_id,
|
|
|
**kwargs,
|
|
|
)
|
|
|
self.vocab_size = vocab_size
|
|
|
self.sequence_len = sequence_len
|
|
|
self.n_layer = n_layer
|
|
|
self.n_head = n_head
|
|
|
self.n_kv_head = n_kv_head
|
|
|
self.n_embd = n_embd
|
|
|
self.rotary_dim = rotary_dim or (n_embd // n_head)
|
|
|
self.activation_function = activation_function
|
|
|
self.use_rope = use_rope
|
|
|
self.use_qk_norm = use_qk_norm
|
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
|
self.softcap = softcap
|
|
|
|
|
|
|
|
|
self.num_hidden_layers = n_layer
|
|
|
self.hidden_size = n_embd
|
|
|
self.num_attention_heads = n_head
|
|
|
self.num_key_value_heads = n_kv_head
|
|
|
|
|
|
|
|
|
def rms_norm(x: Tensor) -> Tensor:
|
|
|
return F.rms_norm(x, (x.size(-1),))
|
|
|
|
|
|
|
|
|
def relu_squared(x: Tensor) -> Tensor:
|
|
|
return F.relu(x) ** 2
|
|
|
|
|
|
|
|
|
def rotate_half(x: Tensor) -> Tensor:
|
|
|
x1, x2 = x.chunk(2, dim=-1)
|
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
|
|
|
def apply_rotary_emb(q: Tensor, k: Tensor, cos: Tensor, sin: Tensor) -> Tuple[Tensor, Tensor]:
|
|
|
q = (q * cos) + (rotate_half(q) * sin)
|
|
|
k = (k * cos) + (rotate_half(k) * sin)
|
|
|
return q, k
|
|
|
|
|
|
|
|
|
def repeat_kv(x: Tensor, n_rep: int) -> Tensor:
|
|
|
if n_rep == 1:
|
|
|
return x
|
|
|
b, n_kv_heads, seq_len, head_dim = x.shape
|
|
|
x = x[:, :, None, :, :].expand(b, n_kv_heads, n_rep, seq_len, head_dim)
|
|
|
return x.reshape(b, n_kv_heads * n_rep, seq_len, head_dim)
|
|
|
|
|
|
|
|
|
class NanoChatAttention(nn.Module):
|
|
|
def __init__(self, config: NanoChatConfig):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
self.n_head = config.n_head
|
|
|
self.n_kv_head = config.n_kv_head
|
|
|
self.head_dim = config.n_embd // config.n_head
|
|
|
if config.n_embd % config.n_head != 0:
|
|
|
raise ValueError("Embedding dimension must be divisible by number of heads")
|
|
|
|
|
|
self.q_proj = nn.Linear(config.n_embd, self.n_head * self.head_dim, bias=False)
|
|
|
self.k_proj = nn.Linear(config.n_embd, self.n_kv_head * self.head_dim, bias=False)
|
|
|
self.v_proj = nn.Linear(config.n_embd, self.n_kv_head * self.head_dim, bias=False)
|
|
|
self.out_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: Tensor,
|
|
|
cos: Tensor,
|
|
|
sin: Tensor,
|
|
|
past_key_value: Optional[Tuple[Tensor, Tensor]] = None,
|
|
|
use_cache: bool = False,
|
|
|
) -> Tuple[Tensor, Optional[Tuple[Tensor, Tensor]]]:
|
|
|
bsz, q_len, _ = hidden_states.shape
|
|
|
|
|
|
query = self.q_proj(hidden_states)
|
|
|
key = self.k_proj(hidden_states)
|
|
|
value = self.v_proj(hidden_states)
|
|
|
|
|
|
query = query.view(bsz, q_len, self.n_head, self.head_dim).transpose(1, 2)
|
|
|
key = key.view(bsz, q_len, self.n_kv_head, self.head_dim).transpose(1, 2)
|
|
|
value = value.view(bsz, q_len, self.n_kv_head, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
query, key = apply_rotary_emb(query, key, cos, sin)
|
|
|
if self.config.use_qk_norm:
|
|
|
query = rms_norm(query)
|
|
|
key = rms_norm(key)
|
|
|
|
|
|
if past_key_value is not None:
|
|
|
past_k, past_v = past_key_value
|
|
|
if past_k is not None and past_v is not None:
|
|
|
key = torch.cat([past_k, key], dim=2)
|
|
|
value = torch.cat([past_v, value], dim=2)
|
|
|
|
|
|
present = (key, value) if use_cache else None
|
|
|
|
|
|
key_for_scores = repeat_kv(key, self.n_head // self.n_kv_head)
|
|
|
value_for_scores = repeat_kv(value, self.n_head // self.n_kv_head)
|
|
|
|
|
|
attn_scores = torch.matmul(query, key_for_scores.transpose(-1, -2)) / math.sqrt(self.head_dim)
|
|
|
attn_scores = attn_scores.to(torch.float32)
|
|
|
|
|
|
|
|
|
if attn_scores.size(-1) != q_len:
|
|
|
total_k = attn_scores.size(-1)
|
|
|
past_len = total_k - q_len
|
|
|
mask = torch.arange(total_k, device=attn_scores.device)
|
|
|
causal = mask.unsqueeze(0) <= (mask.new_tensor(past_len) + torch.arange(q_len, device=mask.device).unsqueeze(1))
|
|
|
attn_scores = attn_scores.masked_fill(~causal, torch.finfo(attn_scores.dtype).min)
|
|
|
else:
|
|
|
mask = torch.triu(torch.ones((q_len, q_len), device=attn_scores.device, dtype=torch.bool), diagonal=1)
|
|
|
attn_scores = attn_scores.masked_fill(mask, torch.finfo(attn_scores.dtype).min)
|
|
|
|
|
|
attn_weights = F.softmax(attn_scores, dim=-1, dtype=torch.float32)
|
|
|
attn_output = torch.matmul(attn_weights, value_for_scores).to(value_for_scores.dtype)
|
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1)
|
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
|
|
return attn_output, present
|
|
|
|
|
|
|
|
|
class NanoChatMLP(nn.Module):
|
|
|
def __init__(self, config: NanoChatConfig):
|
|
|
super().__init__()
|
|
|
hidden_dim = config.n_embd * 4
|
|
|
self.fc = nn.Linear(config.n_embd, hidden_dim, bias=False)
|
|
|
self.proj = nn.Linear(hidden_dim, config.n_embd, bias=False)
|
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
|
return self.proj(relu_squared(self.fc(x)))
|
|
|
|
|
|
|
|
|
class NanoChatBlock(nn.Module):
|
|
|
def __init__(self, config: NanoChatConfig):
|
|
|
super().__init__()
|
|
|
self.attn = NanoChatAttention(config)
|
|
|
self.mlp = NanoChatMLP(config)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
x: Tensor,
|
|
|
cos: Tensor,
|
|
|
sin: Tensor,
|
|
|
past_key_value: Optional[Tuple[Tensor, Tensor]] = None,
|
|
|
use_cache: bool = False,
|
|
|
) -> Tuple[Tensor, Optional[Tuple[Tensor, Tensor]]]:
|
|
|
residual = x
|
|
|
attn_input = rms_norm(x)
|
|
|
attn_output, present = self.attn(attn_input, cos, sin, past_key_value, use_cache)
|
|
|
x = residual + attn_output
|
|
|
mlp_input = rms_norm(x)
|
|
|
x = x + self.mlp(mlp_input)
|
|
|
return x, present
|
|
|
|
|
|
|
|
|
class NanoChatModel(nn.Module):
|
|
|
def __init__(self, config: NanoChatConfig):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
|
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
|
self.blocks = nn.ModuleList([NanoChatBlock(config) for _ in range(config.n_layer)])
|
|
|
|
|
|
self.softcap = config.softcap
|
|
|
self._rope_cache: Optional[Tuple[Tensor, Tensor]] = None
|
|
|
self._rope_cache_length = 0
|
|
|
|
|
|
def _build_rope_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> Tuple[Tensor, Tensor]:
|
|
|
if self._rope_cache is not None and self._rope_cache_length >= seq_len and self._rope_cache[0].device == device:
|
|
|
return self._rope_cache
|
|
|
|
|
|
head_dim = self.config.n_embd // self.config.n_head
|
|
|
theta = 10000.0 ** (-torch.arange(0, head_dim, 2, device=device, dtype=torch.float32) / head_dim)
|
|
|
position_ids = torch.arange(seq_len, device=device, dtype=torch.float32)
|
|
|
freqs = torch.einsum("i,j->ij", position_ids, theta)
|
|
|
cos = freqs.cos()[None, None, :, :]
|
|
|
sin = freqs.sin()[None, None, :, :]
|
|
|
|
|
|
cos = torch.repeat_interleave(cos, repeats=2, dim=-1)
|
|
|
sin = torch.repeat_interleave(sin, repeats=2, dim=-1)
|
|
|
cos = cos.to(dtype=dtype)
|
|
|
sin = sin.to(dtype=dtype)
|
|
|
|
|
|
self._rope_cache = (cos, sin)
|
|
|
self._rope_cache_length = seq_len
|
|
|
return cos, sin
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids: Tensor,
|
|
|
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
|
|
|
attention_mask: Optional[Tensor] = None,
|
|
|
labels: Optional[Tensor] = None,
|
|
|
use_cache: bool = False,
|
|
|
) -> Tuple[Tensor, Optional[Tuple[Tuple[Tensor, Tensor], ...]]]:
|
|
|
del attention_mask
|
|
|
bsz, seq_len = input_ids.shape
|
|
|
device = input_ids.device
|
|
|
dtype = self.embed_tokens.weight.dtype
|
|
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
x = inputs_embeds
|
|
|
|
|
|
past_key_values = past_key_values or tuple([None] * len(self.blocks))
|
|
|
|
|
|
past_length = 0
|
|
|
if past_key_values and past_key_values[0] is not None:
|
|
|
if past_key_values[0][0] is not None:
|
|
|
past_length = past_key_values[0][0].size(2)
|
|
|
|
|
|
cos_full, sin_full = self._build_rope_cache(seq_len + past_length, device, dtype)
|
|
|
cos = cos_full[:, :, past_length:, :]
|
|
|
sin = sin_full[:, :, past_length:, :]
|
|
|
new_past_key_values = [] if use_cache else None
|
|
|
|
|
|
for layer, block in enumerate(self.blocks):
|
|
|
past = past_key_values[layer] if past_key_values[layer] is not None else None
|
|
|
x, present = block(x, cos, sin, past, use_cache)
|
|
|
if use_cache:
|
|
|
new_past_key_values.append(present)
|
|
|
|
|
|
x = rms_norm(x)
|
|
|
logits = self.lm_head(x)
|
|
|
|
|
|
if self.softcap is not None and self.softcap > 0:
|
|
|
logits = self.softcap * torch.tanh(logits / self.softcap)
|
|
|
|
|
|
loss = None
|
|
|
if labels is not None:
|
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)
|
|
|
|
|
|
return logits, loss, tuple(new_past_key_values) if use_cache else None
|
|
|
|
|
|
|
|
|
class NanoChatForCausalLM(PreTrainedModel):
|
|
|
config_class = NanoChatConfig
|
|
|
base_model_prefix = "model"
|
|
|
supports_gradient_checkpointing = False
|
|
|
|
|
|
def __init__(self, config: NanoChatConfig):
|
|
|
super().__init__(config)
|
|
|
self.model = NanoChatModel(config)
|
|
|
if config.tie_word_embeddings:
|
|
|
self.tie_weights()
|
|
|
|
|
|
def get_input_embeddings(self) -> nn.Embedding:
|
|
|
return self.model.embed_tokens
|
|
|
|
|
|
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
|
|
self.model.embed_tokens = value
|
|
|
|
|
|
def get_output_embeddings(self) -> nn.Linear:
|
|
|
return self.model.lm_head
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
|
|
self.model.lm_head = new_embeddings
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
|
self,
|
|
|
input_ids: Tensor,
|
|
|
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
|
|
|
**kwargs,
|
|
|
):
|
|
|
if past_key_values:
|
|
|
input_ids = input_ids[:, -1:]
|
|
|
return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache", True)}
|
|
|
|
|
|
def _reorder_cache(self, past_key_values, beam_idx):
|
|
|
reordered = []
|
|
|
for layer_past in past_key_values:
|
|
|
reordered.append(
|
|
|
(
|
|
|
layer_past[0].index_select(0, beam_idx),
|
|
|
layer_past[1].index_select(0, beam_idx),
|
|
|
)
|
|
|
)
|
|
|
return tuple(reordered)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids: Tensor,
|
|
|
attention_mask: Optional[Tensor] = None,
|
|
|
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
|
|
|
labels: Optional[Tensor] = None,
|
|
|
use_cache: bool = False,
|
|
|
**kwargs,
|
|
|
) -> CausalLMOutputWithPast:
|
|
|
logits, loss, new_past = self.model(
|
|
|
input_ids=input_ids,
|
|
|
past_key_values=past_key_values,
|
|
|
attention_mask=attention_mask,
|
|
|
labels=labels,
|
|
|
use_cache=use_cache,
|
|
|
)
|
|
|
return CausalLMOutputWithPast(
|
|
|
loss=loss,
|
|
|
logits=logits,
|
|
|
past_key_values=new_past,
|
|
|
)
|
|
|
|
|
|
|
|
|
try: |
|
|
AutoConfig.register("nanochat", NanoChatConfig) |
|
|
except ValueError: |
|
|
|
|
|
pass |
|
|
|
|
|
try: |
|
|
AutoModelForCausalLM.register(NanoChatConfig, NanoChatForCausalLM) |
|
|
except ValueError: |
|
|
pass |
|
|
|