chore: restore custom modeling
Browse files- modeling_nanochat.py +365 -0
modeling_nanochat.py
ADDED
|
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Hugging Face-compatible nanochat Transformer implementation.
|
| 3 |
+
|
| 4 |
+
This file mirrors the architecture used during training (RoPE, RMSNorm,
|
| 5 |
+
multi-query attention, relu^2 MLP, untied embeddings, logits softcap) while
|
| 6 |
+
presenting the familiar `PreTrainedModel` interface so that checkpoints can be
|
| 7 |
+
served directly from the Hugging Face Hub.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from __future__ import annotations
|
| 11 |
+
|
| 12 |
+
import math
|
| 13 |
+
from typing import Optional, Tuple, Union
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from torch import Tensor
|
| 19 |
+
|
| 20 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 21 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class NanoChatConfig(PretrainedConfig):
|
| 30 |
+
model_type = "nanochat"
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
vocab_size=65536,
|
| 35 |
+
sequence_len=2048,
|
| 36 |
+
n_layer=20,
|
| 37 |
+
n_head=10,
|
| 38 |
+
n_kv_head=10,
|
| 39 |
+
n_embd=1280,
|
| 40 |
+
rotary_dim=None,
|
| 41 |
+
activation_function="relu_squared",
|
| 42 |
+
use_rope=True,
|
| 43 |
+
use_qk_norm=True,
|
| 44 |
+
tie_word_embeddings=False,
|
| 45 |
+
softcap=15.0,
|
| 46 |
+
bos_token_id=1,
|
| 47 |
+
eos_token_id=1,
|
| 48 |
+
pad_token_id=None,
|
| 49 |
+
**kwargs,
|
| 50 |
+
):
|
| 51 |
+
super().__init__(
|
| 52 |
+
bos_token_id=bos_token_id,
|
| 53 |
+
eos_token_id=eos_token_id,
|
| 54 |
+
pad_token_id=pad_token_id,
|
| 55 |
+
**kwargs,
|
| 56 |
+
)
|
| 57 |
+
self.vocab_size = vocab_size
|
| 58 |
+
self.sequence_len = sequence_len
|
| 59 |
+
self.n_layer = n_layer
|
| 60 |
+
self.n_head = n_head
|
| 61 |
+
self.n_kv_head = n_kv_head
|
| 62 |
+
self.n_embd = n_embd
|
| 63 |
+
self.rotary_dim = rotary_dim or (n_embd // n_head)
|
| 64 |
+
self.activation_function = activation_function
|
| 65 |
+
self.use_rope = use_rope
|
| 66 |
+
self.use_qk_norm = use_qk_norm
|
| 67 |
+
self.tie_word_embeddings = tie_word_embeddings
|
| 68 |
+
self.softcap = softcap
|
| 69 |
+
|
| 70 |
+
# Aliases for transformers compatibility
|
| 71 |
+
self.num_hidden_layers = n_layer
|
| 72 |
+
self.hidden_size = n_embd
|
| 73 |
+
self.num_attention_heads = n_head
|
| 74 |
+
self.num_key_value_heads = n_kv_head
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def rms_norm(x: Tensor) -> Tensor:
|
| 78 |
+
return F.rms_norm(x, (x.size(-1),))
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def relu_squared(x: Tensor) -> Tensor:
|
| 82 |
+
return F.relu(x) ** 2
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def rotate_half(x: Tensor) -> Tensor:
|
| 86 |
+
x1, x2 = x.chunk(2, dim=-1)
|
| 87 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def apply_rotary_emb(q: Tensor, k: Tensor, cos: Tensor, sin: Tensor) -> Tuple[Tensor, Tensor]:
|
| 91 |
+
q = (q * cos) + (rotate_half(q) * sin)
|
| 92 |
+
k = (k * cos) + (rotate_half(k) * sin)
|
| 93 |
+
return q, k
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def repeat_kv(x: Tensor, n_rep: int) -> Tensor:
|
| 97 |
+
if n_rep == 1:
|
| 98 |
+
return x
|
| 99 |
+
b, n_kv_heads, seq_len, head_dim = x.shape
|
| 100 |
+
x = x[:, :, None, :, :].expand(b, n_kv_heads, n_rep, seq_len, head_dim)
|
| 101 |
+
return x.reshape(b, n_kv_heads * n_rep, seq_len, head_dim)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class NanoChatAttention(nn.Module):
|
| 105 |
+
def __init__(self, config: NanoChatConfig):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.config = config
|
| 108 |
+
self.n_head = config.n_head
|
| 109 |
+
self.n_kv_head = config.n_kv_head
|
| 110 |
+
self.head_dim = config.n_embd // config.n_head
|
| 111 |
+
if config.n_embd % config.n_head != 0:
|
| 112 |
+
raise ValueError("Embedding dimension must be divisible by number of heads")
|
| 113 |
+
|
| 114 |
+
self.q_proj = nn.Linear(config.n_embd, self.n_head * self.head_dim, bias=False)
|
| 115 |
+
self.k_proj = nn.Linear(config.n_embd, self.n_kv_head * self.head_dim, bias=False)
|
| 116 |
+
self.v_proj = nn.Linear(config.n_embd, self.n_kv_head * self.head_dim, bias=False)
|
| 117 |
+
self.out_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
|
| 118 |
+
|
| 119 |
+
def forward(
|
| 120 |
+
self,
|
| 121 |
+
hidden_states: Tensor,
|
| 122 |
+
cos: Tensor,
|
| 123 |
+
sin: Tensor,
|
| 124 |
+
past_key_value: Optional[Tuple[Tensor, Tensor]] = None,
|
| 125 |
+
use_cache: bool = False,
|
| 126 |
+
) -> Tuple[Tensor, Optional[Tuple[Tensor, Tensor]]]:
|
| 127 |
+
bsz, q_len, _ = hidden_states.shape
|
| 128 |
+
|
| 129 |
+
query = self.q_proj(hidden_states)
|
| 130 |
+
key = self.k_proj(hidden_states)
|
| 131 |
+
value = self.v_proj(hidden_states)
|
| 132 |
+
|
| 133 |
+
query = query.view(bsz, q_len, self.n_head, self.head_dim).transpose(1, 2)
|
| 134 |
+
key = key.view(bsz, q_len, self.n_kv_head, self.head_dim).transpose(1, 2)
|
| 135 |
+
value = value.view(bsz, q_len, self.n_kv_head, self.head_dim).transpose(1, 2)
|
| 136 |
+
|
| 137 |
+
query, key = apply_rotary_emb(query, key, cos, sin)
|
| 138 |
+
if self.config.use_qk_norm:
|
| 139 |
+
query = rms_norm(query)
|
| 140 |
+
key = rms_norm(key)
|
| 141 |
+
|
| 142 |
+
if past_key_value is not None:
|
| 143 |
+
past_k, past_v = past_key_value
|
| 144 |
+
if past_k is not None and past_v is not None:
|
| 145 |
+
key = torch.cat([past_k, key], dim=2)
|
| 146 |
+
value = torch.cat([past_v, value], dim=2)
|
| 147 |
+
|
| 148 |
+
present = (key, value) if use_cache else None
|
| 149 |
+
|
| 150 |
+
key_for_scores = repeat_kv(key, self.n_head // self.n_kv_head)
|
| 151 |
+
value_for_scores = repeat_kv(value, self.n_head // self.n_kv_head)
|
| 152 |
+
|
| 153 |
+
attn_scores = torch.matmul(query, key_for_scores.transpose(-1, -2)) / math.sqrt(self.head_dim)
|
| 154 |
+
attn_scores = attn_scores.to(torch.float32)
|
| 155 |
+
|
| 156 |
+
# causal mask that accounts for the prefix introduced by past key values
|
| 157 |
+
if attn_scores.size(-1) != q_len:
|
| 158 |
+
total_k = attn_scores.size(-1)
|
| 159 |
+
past_len = total_k - q_len
|
| 160 |
+
mask = torch.arange(total_k, device=attn_scores.device)
|
| 161 |
+
causal = mask.unsqueeze(0) <= (mask.new_tensor(past_len) + torch.arange(q_len, device=mask.device).unsqueeze(1))
|
| 162 |
+
attn_scores = attn_scores.masked_fill(~causal, torch.finfo(attn_scores.dtype).min)
|
| 163 |
+
else:
|
| 164 |
+
mask = torch.triu(torch.ones((q_len, q_len), device=attn_scores.device, dtype=torch.bool), diagonal=1)
|
| 165 |
+
attn_scores = attn_scores.masked_fill(mask, torch.finfo(attn_scores.dtype).min)
|
| 166 |
+
|
| 167 |
+
attn_weights = F.softmax(attn_scores, dim=-1, dtype=torch.float32)
|
| 168 |
+
attn_output = torch.matmul(attn_weights, value_for_scores).to(value_for_scores.dtype)
|
| 169 |
+
|
| 170 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1)
|
| 171 |
+
attn_output = self.out_proj(attn_output)
|
| 172 |
+
|
| 173 |
+
return attn_output, present
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class NanoChatMLP(nn.Module):
|
| 177 |
+
def __init__(self, config: NanoChatConfig):
|
| 178 |
+
super().__init__()
|
| 179 |
+
hidden_dim = config.n_embd * 4
|
| 180 |
+
self.fc = nn.Linear(config.n_embd, hidden_dim, bias=False)
|
| 181 |
+
self.proj = nn.Linear(hidden_dim, config.n_embd, bias=False)
|
| 182 |
+
|
| 183 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 184 |
+
return self.proj(relu_squared(self.fc(x)))
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class NanoChatBlock(nn.Module):
|
| 188 |
+
def __init__(self, config: NanoChatConfig):
|
| 189 |
+
super().__init__()
|
| 190 |
+
self.attn = NanoChatAttention(config)
|
| 191 |
+
self.mlp = NanoChatMLP(config)
|
| 192 |
+
|
| 193 |
+
def forward(
|
| 194 |
+
self,
|
| 195 |
+
x: Tensor,
|
| 196 |
+
cos: Tensor,
|
| 197 |
+
sin: Tensor,
|
| 198 |
+
past_key_value: Optional[Tuple[Tensor, Tensor]] = None,
|
| 199 |
+
use_cache: bool = False,
|
| 200 |
+
) -> Tuple[Tensor, Optional[Tuple[Tensor, Tensor]]]:
|
| 201 |
+
residual = x
|
| 202 |
+
attn_input = rms_norm(x)
|
| 203 |
+
attn_output, present = self.attn(attn_input, cos, sin, past_key_value, use_cache)
|
| 204 |
+
x = residual + attn_output
|
| 205 |
+
mlp_input = rms_norm(x)
|
| 206 |
+
x = x + self.mlp(mlp_input)
|
| 207 |
+
return x, present
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class NanoChatModel(nn.Module):
|
| 211 |
+
def __init__(self, config: NanoChatConfig):
|
| 212 |
+
super().__init__()
|
| 213 |
+
self.config = config
|
| 214 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
|
| 215 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 216 |
+
self.blocks = nn.ModuleList([NanoChatBlock(config) for _ in range(config.n_layer)])
|
| 217 |
+
|
| 218 |
+
self.softcap = config.softcap
|
| 219 |
+
self._rope_cache: Optional[Tuple[Tensor, Tensor]] = None
|
| 220 |
+
self._rope_cache_length = 0
|
| 221 |
+
|
| 222 |
+
def _build_rope_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> Tuple[Tensor, Tensor]:
|
| 223 |
+
if self._rope_cache is not None and self._rope_cache_length >= seq_len and self._rope_cache[0].device == device:
|
| 224 |
+
return self._rope_cache
|
| 225 |
+
|
| 226 |
+
head_dim = self.config.n_embd // self.config.n_head
|
| 227 |
+
theta = 10000.0 ** (-torch.arange(0, head_dim, 2, device=device, dtype=torch.float32) / head_dim)
|
| 228 |
+
position_ids = torch.arange(seq_len, device=device, dtype=torch.float32)
|
| 229 |
+
freqs = torch.einsum("i,j->ij", position_ids, theta)
|
| 230 |
+
cos = freqs.cos()[None, None, :, :]
|
| 231 |
+
sin = freqs.sin()[None, None, :, :]
|
| 232 |
+
# Expand to full head_dim (from head_dim/2 to head_dim)
|
| 233 |
+
cos = torch.repeat_interleave(cos, repeats=2, dim=-1)
|
| 234 |
+
sin = torch.repeat_interleave(sin, repeats=2, dim=-1)
|
| 235 |
+
cos = cos.to(dtype=dtype)
|
| 236 |
+
sin = sin.to(dtype=dtype)
|
| 237 |
+
|
| 238 |
+
self._rope_cache = (cos, sin)
|
| 239 |
+
self._rope_cache_length = seq_len
|
| 240 |
+
return cos, sin
|
| 241 |
+
|
| 242 |
+
def forward(
|
| 243 |
+
self,
|
| 244 |
+
input_ids: Tensor,
|
| 245 |
+
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
|
| 246 |
+
attention_mask: Optional[Tensor] = None,
|
| 247 |
+
labels: Optional[Tensor] = None,
|
| 248 |
+
use_cache: bool = False,
|
| 249 |
+
) -> Tuple[Tensor, Optional[Tuple[Tuple[Tensor, Tensor], ...]]]:
|
| 250 |
+
del attention_mask # attention masking is handled implicitly via causal masking
|
| 251 |
+
bsz, seq_len = input_ids.shape
|
| 252 |
+
device = input_ids.device
|
| 253 |
+
dtype = self.embed_tokens.weight.dtype
|
| 254 |
+
|
| 255 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 256 |
+
x = inputs_embeds
|
| 257 |
+
|
| 258 |
+
past_key_values = past_key_values or tuple([None] * len(self.blocks))
|
| 259 |
+
# Handle DynamicCache which may have (None, None) tuples
|
| 260 |
+
past_length = 0
|
| 261 |
+
if past_key_values and past_key_values[0] is not None:
|
| 262 |
+
if past_key_values[0][0] is not None:
|
| 263 |
+
past_length = past_key_values[0][0].size(2)
|
| 264 |
+
|
| 265 |
+
cos_full, sin_full = self._build_rope_cache(seq_len + past_length, device, dtype)
|
| 266 |
+
cos = cos_full[:, :, past_length:, :]
|
| 267 |
+
sin = sin_full[:, :, past_length:, :]
|
| 268 |
+
new_past_key_values = [] if use_cache else None
|
| 269 |
+
|
| 270 |
+
for layer, block in enumerate(self.blocks):
|
| 271 |
+
past = past_key_values[layer] if past_key_values[layer] is not None else None
|
| 272 |
+
x, present = block(x, cos, sin, past, use_cache)
|
| 273 |
+
if use_cache:
|
| 274 |
+
new_past_key_values.append(present)
|
| 275 |
+
|
| 276 |
+
x = rms_norm(x)
|
| 277 |
+
logits = self.lm_head(x)
|
| 278 |
+
|
| 279 |
+
if self.softcap is not None and self.softcap > 0:
|
| 280 |
+
logits = self.softcap * torch.tanh(logits / self.softcap)
|
| 281 |
+
|
| 282 |
+
loss = None
|
| 283 |
+
if labels is not None:
|
| 284 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)
|
| 285 |
+
|
| 286 |
+
return logits, loss, tuple(new_past_key_values) if use_cache else None
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class NanoChatForCausalLM(PreTrainedModel):
|
| 290 |
+
config_class = NanoChatConfig
|
| 291 |
+
base_model_prefix = "model"
|
| 292 |
+
supports_gradient_checkpointing = False
|
| 293 |
+
|
| 294 |
+
def __init__(self, config: NanoChatConfig):
|
| 295 |
+
super().__init__(config)
|
| 296 |
+
self.model = NanoChatModel(config)
|
| 297 |
+
if config.tie_word_embeddings:
|
| 298 |
+
self.tie_weights()
|
| 299 |
+
|
| 300 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
| 301 |
+
return self.model.embed_tokens
|
| 302 |
+
|
| 303 |
+
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
| 304 |
+
self.model.embed_tokens = value
|
| 305 |
+
|
| 306 |
+
def get_output_embeddings(self) -> nn.Linear:
|
| 307 |
+
return self.model.lm_head
|
| 308 |
+
|
| 309 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
| 310 |
+
self.model.lm_head = new_embeddings
|
| 311 |
+
|
| 312 |
+
def prepare_inputs_for_generation(
|
| 313 |
+
self,
|
| 314 |
+
input_ids: Tensor,
|
| 315 |
+
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
|
| 316 |
+
**kwargs,
|
| 317 |
+
):
|
| 318 |
+
if past_key_values:
|
| 319 |
+
input_ids = input_ids[:, -1:]
|
| 320 |
+
return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache", True)}
|
| 321 |
+
|
| 322 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
| 323 |
+
reordered = []
|
| 324 |
+
for layer_past in past_key_values:
|
| 325 |
+
reordered.append(
|
| 326 |
+
(
|
| 327 |
+
layer_past[0].index_select(0, beam_idx),
|
| 328 |
+
layer_past[1].index_select(0, beam_idx),
|
| 329 |
+
)
|
| 330 |
+
)
|
| 331 |
+
return tuple(reordered)
|
| 332 |
+
|
| 333 |
+
def forward(
|
| 334 |
+
self,
|
| 335 |
+
input_ids: Tensor,
|
| 336 |
+
attention_mask: Optional[Tensor] = None,
|
| 337 |
+
past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,
|
| 338 |
+
labels: Optional[Tensor] = None,
|
| 339 |
+
use_cache: bool = False,
|
| 340 |
+
**kwargs,
|
| 341 |
+
) -> CausalLMOutputWithPast:
|
| 342 |
+
logits, loss, new_past = self.model(
|
| 343 |
+
input_ids=input_ids,
|
| 344 |
+
past_key_values=past_key_values,
|
| 345 |
+
attention_mask=attention_mask,
|
| 346 |
+
labels=labels,
|
| 347 |
+
use_cache=use_cache,
|
| 348 |
+
)
|
| 349 |
+
return CausalLMOutputWithPast(
|
| 350 |
+
loss=loss,
|
| 351 |
+
logits=logits,
|
| 352 |
+
past_key_values=new_past,
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
try:
|
| 357 |
+
AutoConfig.register("nanochat", NanoChatConfig)
|
| 358 |
+
except ValueError:
|
| 359 |
+
# Transformers build already provides this registration (e.g., nanochat branch); reuse it.
|
| 360 |
+
pass
|
| 361 |
+
|
| 362 |
+
try:
|
| 363 |
+
AutoModelForCausalLM.register(NanoChatConfig, NanoChatForCausalLM)
|
| 364 |
+
except ValueError:
|
| 365 |
+
pass
|