File size: 13,581 Bytes
48373f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""

Hugging Face-compatible nanochat Transformer implementation.



This file mirrors the architecture used during training (RoPE, RMSNorm,

multi-query attention, relu^2 MLP, untied embeddings, logits softcap) while

presenting the familiar `PreTrainedModel` interface so that checkpoints can be

served directly from the Hugging Face Hub.

"""

from __future__ import annotations

import math
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers import AutoConfig, AutoModelForCausalLM

logger = logging.get_logger(__name__)


class NanoChatConfig(PretrainedConfig):
    model_type = "nanochat"

    def __init__(

        self,

        vocab_size=65536,

        sequence_len=2048,

        n_layer=20,

        n_head=10,

        n_kv_head=10,

        n_embd=1280,

        rotary_dim=None,

        activation_function="relu_squared",

        use_rope=True,

        use_qk_norm=True,

        tie_word_embeddings=False,

        softcap=15.0,

        bos_token_id=1,

        eos_token_id=1,

        pad_token_id=None,

        **kwargs,

    ):
        super().__init__(
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            pad_token_id=pad_token_id,
            **kwargs,
        )
        self.vocab_size = vocab_size
        self.sequence_len = sequence_len
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_kv_head = n_kv_head
        self.n_embd = n_embd
        self.rotary_dim = rotary_dim or (n_embd // n_head)
        self.activation_function = activation_function
        self.use_rope = use_rope
        self.use_qk_norm = use_qk_norm
        self.tie_word_embeddings = tie_word_embeddings
        self.softcap = softcap
        
        # Aliases for transformers compatibility
        self.num_hidden_layers = n_layer
        self.hidden_size = n_embd
        self.num_attention_heads = n_head
        self.num_key_value_heads = n_kv_head


def rms_norm(x: Tensor) -> Tensor:
    return F.rms_norm(x, (x.size(-1),))


def relu_squared(x: Tensor) -> Tensor:
    return F.relu(x) ** 2


def rotate_half(x: Tensor) -> Tensor:
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_emb(q: Tensor, k: Tensor, cos: Tensor, sin: Tensor) -> Tuple[Tensor, Tensor]:
    q = (q * cos) + (rotate_half(q) * sin)
    k = (k * cos) + (rotate_half(k) * sin)
    return q, k


def repeat_kv(x: Tensor, n_rep: int) -> Tensor:
    if n_rep == 1:
        return x
    b, n_kv_heads, seq_len, head_dim = x.shape
    x = x[:, :, None, :, :].expand(b, n_kv_heads, n_rep, seq_len, head_dim)
    return x.reshape(b, n_kv_heads * n_rep, seq_len, head_dim)


class NanoChatAttention(nn.Module):
    def __init__(self, config: NanoChatConfig):
        super().__init__()
        self.config = config
        self.n_head = config.n_head
        self.n_kv_head = config.n_kv_head
        self.head_dim = config.n_embd // config.n_head
        if config.n_embd % config.n_head != 0:
            raise ValueError("Embedding dimension must be divisible by number of heads")

        self.q_proj = nn.Linear(config.n_embd, self.n_head * self.head_dim, bias=False)
        self.k_proj = nn.Linear(config.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.v_proj = nn.Linear(config.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.out_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)

    def forward(

        self,

        hidden_states: Tensor,

        cos: Tensor,

        sin: Tensor,

        past_key_value: Optional[Tuple[Tensor, Tensor]] = None,

        use_cache: bool = False,

    ) -> Tuple[Tensor, Optional[Tuple[Tensor, Tensor]]]:
        bsz, q_len, _ = hidden_states.shape

        query = self.q_proj(hidden_states)
        key = self.k_proj(hidden_states)
        value = self.v_proj(hidden_states)

        query = query.view(bsz, q_len, self.n_head, self.head_dim).transpose(1, 2)
        key = key.view(bsz, q_len, self.n_kv_head, self.head_dim).transpose(1, 2)
        value = value.view(bsz, q_len, self.n_kv_head, self.head_dim).transpose(1, 2)

        query, key = apply_rotary_emb(query, key, cos, sin)
        if self.config.use_qk_norm:
            query = rms_norm(query)
            key = rms_norm(key)

        if past_key_value is not None:
            past_k, past_v = past_key_value
            if past_k is not None and past_v is not None:
                key = torch.cat([past_k, key], dim=2)
                value = torch.cat([past_v, value], dim=2)

        present = (key, value) if use_cache else None

        key_for_scores = repeat_kv(key, self.n_head // self.n_kv_head)
        value_for_scores = repeat_kv(value, self.n_head // self.n_kv_head)

        attn_scores = torch.matmul(query, key_for_scores.transpose(-1, -2)) / math.sqrt(self.head_dim)
        attn_scores = attn_scores.to(torch.float32)

        # causal mask that accounts for the prefix introduced by past key values
        if attn_scores.size(-1) != q_len:
            total_k = attn_scores.size(-1)
            past_len = total_k - q_len
            mask = torch.arange(total_k, device=attn_scores.device)
            causal = mask.unsqueeze(0) <= (mask.new_tensor(past_len) + torch.arange(q_len, device=mask.device).unsqueeze(1))
            attn_scores = attn_scores.masked_fill(~causal, torch.finfo(attn_scores.dtype).min)
        else:
            mask = torch.triu(torch.ones((q_len, q_len), device=attn_scores.device, dtype=torch.bool), diagonal=1)
            attn_scores = attn_scores.masked_fill(mask, torch.finfo(attn_scores.dtype).min)

        attn_weights = F.softmax(attn_scores, dim=-1, dtype=torch.float32)
        attn_output = torch.matmul(attn_weights, value_for_scores).to(value_for_scores.dtype)

        attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1)
        attn_output = self.out_proj(attn_output)

        return attn_output, present


class NanoChatMLP(nn.Module):
    def __init__(self, config: NanoChatConfig):
        super().__init__()
        hidden_dim = config.n_embd * 4
        self.fc = nn.Linear(config.n_embd, hidden_dim, bias=False)
        self.proj = nn.Linear(hidden_dim, config.n_embd, bias=False)

    def forward(self, x: Tensor) -> Tensor:
        return self.proj(relu_squared(self.fc(x)))


class NanoChatBlock(nn.Module):
    def __init__(self, config: NanoChatConfig):
        super().__init__()
        self.attn = NanoChatAttention(config)
        self.mlp = NanoChatMLP(config)

    def forward(

        self,

        x: Tensor,

        cos: Tensor,

        sin: Tensor,

        past_key_value: Optional[Tuple[Tensor, Tensor]] = None,

        use_cache: bool = False,

    ) -> Tuple[Tensor, Optional[Tuple[Tensor, Tensor]]]:
        residual = x
        attn_input = rms_norm(x)
        attn_output, present = self.attn(attn_input, cos, sin, past_key_value, use_cache)
        x = residual + attn_output
        mlp_input = rms_norm(x)
        x = x + self.mlp(mlp_input)
        return x, present


class NanoChatModel(nn.Module):
    def __init__(self, config: NanoChatConfig):
        super().__init__()
        self.config = config
        self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.blocks = nn.ModuleList([NanoChatBlock(config) for _ in range(config.n_layer)])

        self.softcap = config.softcap
        self._rope_cache: Optional[Tuple[Tensor, Tensor]] = None
        self._rope_cache_length = 0

    def _build_rope_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> Tuple[Tensor, Tensor]:
        if self._rope_cache is not None and self._rope_cache_length >= seq_len and self._rope_cache[0].device == device:
            return self._rope_cache

        head_dim = self.config.n_embd // self.config.n_head
        theta = 10000.0 ** (-torch.arange(0, head_dim, 2, device=device, dtype=torch.float32) / head_dim)
        position_ids = torch.arange(seq_len, device=device, dtype=torch.float32)
        freqs = torch.einsum("i,j->ij", position_ids, theta)
        cos = freqs.cos()[None, None, :, :]
        sin = freqs.sin()[None, None, :, :]
        # Expand to full head_dim (from head_dim/2 to head_dim)
        cos = torch.repeat_interleave(cos, repeats=2, dim=-1)
        sin = torch.repeat_interleave(sin, repeats=2, dim=-1)
        cos = cos.to(dtype=dtype)
        sin = sin.to(dtype=dtype)

        self._rope_cache = (cos, sin)
        self._rope_cache_length = seq_len
        return cos, sin

    def forward(

        self,

        input_ids: Tensor,

        past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,

        attention_mask: Optional[Tensor] = None,

        labels: Optional[Tensor] = None,

        use_cache: bool = False,

    ) -> Tuple[Tensor, Optional[Tuple[Tuple[Tensor, Tensor], ...]]]:
        del attention_mask  # attention masking is handled implicitly via causal masking
        bsz, seq_len = input_ids.shape
        device = input_ids.device
        dtype = self.embed_tokens.weight.dtype

        inputs_embeds = self.embed_tokens(input_ids)
        x = inputs_embeds

        past_key_values = past_key_values or tuple([None] * len(self.blocks))
        # Handle DynamicCache which may have (None, None) tuples
        past_length = 0
        if past_key_values and past_key_values[0] is not None:
            if past_key_values[0][0] is not None:
                past_length = past_key_values[0][0].size(2)

        cos_full, sin_full = self._build_rope_cache(seq_len + past_length, device, dtype)
        cos = cos_full[:, :, past_length:, :]
        sin = sin_full[:, :, past_length:, :]
        new_past_key_values = [] if use_cache else None

        for layer, block in enumerate(self.blocks):
            past = past_key_values[layer] if past_key_values[layer] is not None else None
            x, present = block(x, cos, sin, past, use_cache)
            if use_cache:
                new_past_key_values.append(present)

        x = rms_norm(x)
        logits = self.lm_head(x)

        if self.softcap is not None and self.softcap > 0:
            logits = self.softcap * torch.tanh(logits / self.softcap)

        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)

        return logits, loss, tuple(new_past_key_values) if use_cache else None


class NanoChatForCausalLM(PreTrainedModel):
    config_class = NanoChatConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = False

    def __init__(self, config: NanoChatConfig):
        super().__init__(config)
        self.model = NanoChatModel(config)
        if config.tie_word_embeddings:
            self.tie_weights()

    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

    def set_input_embeddings(self, value: nn.Embedding) -> None:
        self.model.embed_tokens = value

    def get_output_embeddings(self) -> nn.Linear:
        return self.model.lm_head

    def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
        self.model.lm_head = new_embeddings

    def prepare_inputs_for_generation(

        self,

        input_ids: Tensor,

        past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,

        **kwargs,

    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]
        return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache", True)}

    def _reorder_cache(self, past_key_values, beam_idx):
        reordered = []
        for layer_past in past_key_values:
            reordered.append(
                (
                    layer_past[0].index_select(0, beam_idx),
                    layer_past[1].index_select(0, beam_idx),
                )
            )
        return tuple(reordered)

    def forward(

        self,

        input_ids: Tensor,

        attention_mask: Optional[Tensor] = None,

        past_key_values: Optional[Tuple[Tuple[Tensor, Tensor], ...]] = None,

        labels: Optional[Tensor] = None,

        use_cache: bool = False,

        **kwargs,

    ) -> CausalLMOutputWithPast:
        logits, loss, new_past = self.model(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            labels=labels,
            use_cache=use_cache,
        )
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=new_past,
        )


try:
    AutoConfig.register("nanochat", NanoChatConfig)
except ValueError:
    # Transformers build already provides this registration (e.g., nanochat branch); reuse it.
    pass

try:
    AutoModelForCausalLM.register(NanoChatConfig, NanoChatForCausalLM)
except ValueError:
    pass