openai/whisper-large-v3

This model is a fine-tuned version of openai/whisper-large-v3 on the common_voice_22_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3653
  • Wer: 7.4202

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.014 10.8234 5000 0.2178 9.1690
0.0066 21.6457 10000 0.2418 8.8613
0.003 32.4680 15000 0.2610 8.9864
0.0021 43.2904 20000 0.2620 8.7776
0.0028 54.1127 25000 0.2799 9.7522
0.002 64.9361 30000 0.2723 8.9146
0.0011 75.7584 35000 0.2742 8.6509
0.0019 86.5807 40000 0.2881 9.0929
0.0008 97.4030 45000 0.2848 8.2451
0.0003 108.2254 50000 0.2906 8.7016
0.0001 119.0477 55000 0.2925 8.6069
0.0012 129.8711 60000 0.2904 8.9611
0.0 140.6934 65000 0.3061 8.1082
0.0001 151.5157 70000 0.2946 8.3897
0.0 162.3380 75000 0.3021 8.5317
0.0 173.1603 80000 0.3179 8.0305
0.0 183.9837 85000 0.3386 7.7600
0.0 194.8061 90000 0.3542 7.5554
0.0 205.6284 95000 0.3627 7.4633
0.0 216.4507 100000 0.3653 7.4202

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
116
Safetensors
Model size
2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zuazo/whisper-large-v3-eu-cv22.0

Finetuned
(669)
this model

Evaluation results