whisper-medium-en-cv-6.3

This model is a fine-tuned version of openai/whisper-medium.en on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0849
  • Wer: 30.4960

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 48
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 375
  • training_steps: 3750
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0 0 2.4579 46.5401
0.7966 0.1 375 1.0410 35.4868
0.5995 0.2 750 0.9551 32.9149
0.3331 1.1 1125 0.9558 32.7312
0.2529 1.2 1500 0.9757 32.3944
0.1245 2.1 1875 0.9818 32.0882
0.1024 2.2 2250 1.0125 31.3227
0.0495 3.1 2625 1.0336 32.0576
0.0438 3.2 3000 1.0665 30.8022
0.021 4.1 3375 1.0777 31.3840
0.0236 4.2 3750 1.0849 30.4960

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
0.8B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for xbilek25/whisper-medium-en-cv-6.3

Finetuned
(87)
this model

Dataset used to train xbilek25/whisper-medium-en-cv-6.3

Evaluation results