whisper-medium-en-cv-6.3
This model is a fine-tuned version of openai/whisper-medium.en on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.0849
- Wer: 30.4960
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 48
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 375
- training_steps: 3750
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| No log | 0 | 0 | 2.4579 | 46.5401 |
| 0.7966 | 0.1 | 375 | 1.0410 | 35.4868 |
| 0.5995 | 0.2 | 750 | 0.9551 | 32.9149 |
| 0.3331 | 1.1 | 1125 | 0.9558 | 32.7312 |
| 0.2529 | 1.2 | 1500 | 0.9757 | 32.3944 |
| 0.1245 | 2.1 | 1875 | 0.9818 | 32.0882 |
| 0.1024 | 2.2 | 2250 | 1.0125 | 31.3227 |
| 0.0495 | 3.1 | 2625 | 1.0336 | 32.0576 |
| 0.0438 | 3.2 | 3000 | 1.0665 | 30.8022 |
| 0.021 | 4.1 | 3375 | 1.0777 | 31.3840 |
| 0.0236 | 4.2 | 3750 | 1.0849 | 30.4960 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Model tree for xbilek25/whisper-medium-en-cv-6.3
Base model
openai/whisper-medium.enDataset used to train xbilek25/whisper-medium-en-cv-6.3
Evaluation results
- Wer on Common Voice 17.0self-reported30.496