valsv's picture
Upload folder using huggingface_hub
ccd282b verified
"""
NB-Transformer Package
A PyTorch Lightning-based implementation of transformers for fast Negative Binomial GLM
parameter estimation - a modern replacement for DESeq2 statistical analysis.
The package provides attention-based models that learn to estimate parameters of NB GLM
models from variable-length sets of observations, providing 14.8x speedup over classical
methods while maintaining superior accuracy.
Main components:
- DispersionTransformer: Fast NB GLM parameter estimation (mu, beta, alpha)
- PairSetTransformer: Base transformer model for pair-set tasks
- SyntheticNBGLMDataset: Online synthetic data generation for NB GLM
- DispersionLightningModule: PyTorch Lightning training module
- Statistical inference utilities for p-values and confidence intervals
"""
from .model import PairSetTransformer, DispersionTransformer
from .dataset import SyntheticNBGLMDataset, create_dataloaders
from .utils import (
normalize_data,
denormalize_data,
compute_rmse,
compute_mae,
EarlyStopping,
mean_pooling,
masked_mean_pooling,
pad_sequences,
create_padding_mask
)
from .inference import (
compute_fisher_weights,
compute_standard_errors,
compute_wald_statistics,
compute_nb_glm_inference,
validate_calibration,
summarize_calibration_results,
load_pretrained_model,
quick_inference_example
)
from .method_of_moments import (
MethodOfMomentsEstimator,
estimate_nb_glm_parameters,
estimate_batch_parameters,
estimate_batch_parameters_vectorized,
MoMEstimator,
estimate_parameters
)
__version__ = "1.0.0"
__author__ = "Valentine Svensson"
__email__ = "[email protected]"
__all__ = [
"PairSetTransformer",
"DispersionTransformer",
"SyntheticNBGLMDataset",
"create_dataloaders",
"normalize_data",
"denormalize_data",
"compute_rmse",
"compute_mae",
"EarlyStopping",
"mean_pooling",
"masked_mean_pooling",
"pad_sequences",
"create_padding_mask",
"compute_fisher_weights",
"compute_standard_errors",
"compute_wald_statistics",
"compute_nb_glm_inference",
"validate_calibration",
"summarize_calibration_results",
"load_pretrained_model",
"quick_inference_example",
"MethodOfMomentsEstimator",
"estimate_nb_glm_parameters",
"estimate_batch_parameters",
"estimate_batch_parameters_vectorized",
"MoMEstimator",
"estimate_parameters"
]