""" NB-Transformer Package A PyTorch Lightning-based implementation of transformers for fast Negative Binomial GLM parameter estimation - a modern replacement for DESeq2 statistical analysis. The package provides attention-based models that learn to estimate parameters of NB GLM models from variable-length sets of observations, providing 14.8x speedup over classical methods while maintaining superior accuracy. Main components: - DispersionTransformer: Fast NB GLM parameter estimation (mu, beta, alpha) - PairSetTransformer: Base transformer model for pair-set tasks - SyntheticNBGLMDataset: Online synthetic data generation for NB GLM - DispersionLightningModule: PyTorch Lightning training module - Statistical inference utilities for p-values and confidence intervals """ from .model import PairSetTransformer, DispersionTransformer from .dataset import SyntheticNBGLMDataset, create_dataloaders from .utils import ( normalize_data, denormalize_data, compute_rmse, compute_mae, EarlyStopping, mean_pooling, masked_mean_pooling, pad_sequences, create_padding_mask ) from .inference import ( compute_fisher_weights, compute_standard_errors, compute_wald_statistics, compute_nb_glm_inference, validate_calibration, summarize_calibration_results, load_pretrained_model, quick_inference_example ) from .method_of_moments import ( MethodOfMomentsEstimator, estimate_nb_glm_parameters, estimate_batch_parameters, estimate_batch_parameters_vectorized, MoMEstimator, estimate_parameters ) __version__ = "1.0.0" __author__ = "Valentine Svensson" __email__ = "valentine.svensson@gmail.com" __all__ = [ "PairSetTransformer", "DispersionTransformer", "SyntheticNBGLMDataset", "create_dataloaders", "normalize_data", "denormalize_data", "compute_rmse", "compute_mae", "EarlyStopping", "mean_pooling", "masked_mean_pooling", "pad_sequences", "create_padding_mask", "compute_fisher_weights", "compute_standard_errors", "compute_wald_statistics", "compute_nb_glm_inference", "validate_calibration", "summarize_calibration_results", "load_pretrained_model", "quick_inference_example", "MethodOfMomentsEstimator", "estimate_nb_glm_parameters", "estimate_batch_parameters", "estimate_batch_parameters_vectorized", "MoMEstimator", "estimate_parameters" ]