File size: 10,912 Bytes
994363d 6eb96c7 994363d ac5688e b12a659 994363d b12a659 ac5688e b12a659 ac5688e b12a659 9c97640 b12a659 83b2b3a b12a659 ac5688e b12a659 83b881c b12a659 9c97640 83b2b3a b12a659 9c97640 b12a659 ac5688e b12a659 ac5688e 994363d 0d231e5 994363d b12a659 994363d 0d231e5 b12a659 994363d 0d231e5 b12a659 0d231e5 994363d b12a659 994363d 0d231e5 5970cfe b12a659 8213e12 b12a659 8213e12 994363d b12a659 994363d b12a659 d44d9fb 994363d d44d9fb 994363d 6fd83e3 994363d ad49761 16f1089 ad49761 d44d9fb ad49761 994363d 0d231e5 d44d9fb 994363d b12a659 994363d 9e9f019 994363d ac5688e 994363d d7b47f2 994363d b12a659 994363d b12a659 994363d b12a659 8213e12 b12a659 8213e12 994363d 0d231e5 b12a659 83b2b3a 994363d b12a659 8213e12 994363d ac5688e 8213e12 83ee96d d44d9fb 0d231e5 994363d 8213e12 0d231e5 994363d 0d231e5 994363d 8213e12 994363d d44d9fb 8213e12 994363d 8213e12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import openai
import pandas as pd
import os
import gradio as gr
import boto3
import uuid
import logging
import sys
from datetime import datetime
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout), # This will show in HF Spaces logs
logging.FileHandler('app.log', mode='a') # Also save to file
]
)
logger = logging.getLogger(__name__)
# Log application startup
logger.info("π Starting ERP Reconciliation Tool")
logger.info(f"π
Application started at: {datetime.now()}")
try:
openai.api_key = os.environ.get("Open_ai_key")
bucket_name = os.environ.get("Bucket_name")
if not openai.api_key:
logger.warning("β οΈ OpenAI API key not found in environment variables")
else:
logger.info("β
OpenAI API key loaded successfully")
if not bucket_name:
logger.warning("β οΈ S3 bucket name not found in environment variables")
else:
logger.info(f"β
S3 bucket configured: {bucket_name}")
except Exception as e:
logger.error(f"β Error loading environment variables: {e}")
try:
session = boto3.Session(
aws_access_key_id=os.getenv("access_key"),
aws_secret_access_key=os.getenv("secret_access_key")
)
logger.info("β
AWS session created successfully")
except Exception as e:
logger.error(f"β Error creating AWS session: {e}")
def upload_files_to_s3(erp_file_path, external_file_path, content, bucket_name):
logger.info(f"π€ Starting S3 upload process")
try:
s3 = session.client("s3")
session_id = str(uuid.uuid4())
logger.info(f"π Generated session ID: {session_id}")
base_erp = os.path.splitext(os.path.basename(erp_file_path))[0]
base_bank = os.path.splitext(os.path.basename(external_file_path))[0]
# Add session ID to filenames
erp_filename = f"{base_erp}_{session_id}.csv"
bank_filename = f"{base_bank}_{session_id}.csv"
txt_filename = f"{session_id}.txt"
logger.info(f"π Generated filenames - ERP: {erp_filename}, Bank: {bank_filename}, Result: {txt_filename}")
# Write reconciliation output to local file
with open(txt_filename, "w", encoding="utf-8") as file:
file.write(content)
logger.info(f"β
Reconciliation result written to local file: {txt_filename}")
# === Separate folders by type ===
erp_s3_key = f"ERP Statements/{erp_filename}"
bank_s3_key = f"Bank Statements/{bank_filename}"
txt_s3_key = f"Reconciliation Results/{txt_filename}"
# === Combined folder for each run ===
combined_prefix = f"Combined Files/{session_id}/"
erp_combined_key = combined_prefix + erp_filename
bank_combined_key = combined_prefix + bank_filename
txt_combined_key = combined_prefix + txt_filename
# β
Upload to type-based folders
logger.info("π€ Uploading files to type-based S3 folders...")
s3.upload_file(erp_file_path, bucket_name, erp_s3_key)
logger.info(f"β
Uploaded ERP file to: {erp_s3_key}")
s3.upload_file(external_file_path, bucket_name, bank_s3_key)
logger.info(f"β
Uploaded Bank file to: {bank_s3_key}")
s3.upload_file(txt_filename, bucket_name, txt_s3_key)
logger.info(f"β
Uploaded result file to: {txt_s3_key}")
# β
Upload to combined folder
logger.info("π€ Uploading files to combined S3 folder...")
s3.upload_file(erp_file_path, bucket_name, erp_combined_key)
s3.upload_file(external_file_path, bucket_name, bank_combined_key)
s3.upload_file(txt_filename, bucket_name, txt_combined_key)
logger.info(f"β
All files uploaded to combined folder: {combined_prefix}")
# Clean up local file
os.remove(txt_filename)
logger.info(f"ποΈ Cleaned up local file: {txt_filename}")
upload_result = {
"erp_s3_key": erp_s3_key,
"bank_s3_key": bank_s3_key,
"result_s3_key": txt_s3_key,
"combined_keys": [erp_combined_key, bank_combined_key, txt_combined_key],
"session_id": session_id
}
logger.info(f"β
S3 upload process completed successfully for session: {session_id}")
return upload_result
except Exception as e:
logger.error(f"β Error in S3 upload process: {e}")
raise e
# β
Extract transactions from CSV only
def extract_transactions(file):
logger.info(f"π Processing file: {file.name}")
filename = file.name.lower()
if not filename.endswith(".csv"):
error_msg = f"Unsupported file format: {filename}. Please upload a CSV file only."
logger.error(f"β {error_msg}")
raise ValueError(error_msg)
try:
df = pd.read_csv(file.name)
logger.info(f"β
Successfully read CSV file: {file.name}")
logger.info(f"π File contains {len(df)} rows and {len(df.columns)} columns")
logger.info(f"π·οΈ Column names: {list(df.columns)}")
return df.to_string(index=False)
except Exception as e:
error_msg = f"Error processing {file.name}: {e}"
logger.error(f"β {error_msg}")
raise ValueError(error_msg)
# β
Reconcile the statements using OpenAI
def reconcile_statements_openai(erp_file, external_file):
session_start = datetime.now()
logger.info(f"π Starting reconciliation process at: {session_start}")
# Validate inputs
if not erp_file or not external_file:
error_msg = "Both ERP and External files are required"
logger.error(f"β {error_msg}")
yield "β Error: Missing files", f"<h3>Error</h3><pre>{error_msg}</pre>", None
return
logger.info(f"π ERP file: {erp_file.name if erp_file else 'None'}")
logger.info(f"π¦ External file: {external_file.name if external_file else 'None'}")
yield "β³ Processing your request...", "", None
try:
# Extract data from files
logger.info("π Extracting data from ERP file...")
erp_data = extract_transactions(erp_file)
logger.info("π Extracting data from External file...")
external_data = extract_transactions(external_file)
prompt = f"""
You are a financial analyst specializing in account reconciliations. Your task is to compare two data sets: one from an ERP system and the other from a
Bank or Vendor statement.
The goal is to identify which transactions match across both data sets, and which transactions are unmatched or potentially erroneous.
Each dataset contains transaction entries with **Date**, **Amount**, and **Description**.
ERP descriptions may include prefixes like "Vendor Payment - ", while external descriptions are simpler.
Please attempt to normalize and fuzzy-match transactions by:
- Ignoring common prefixes/suffixes
- Allowing for small amount rounding differences (Β±$0.01β$1)
- Matching based on partial vendor or keyword overlaps
.
---
Please follow this format in your response:
1. π **Introduction**
Briefly explain what reconciliation means and how you'll approach it.
2. β
**Matched Transactions**
Make a table to show side by side comparison of matched transactions
3. π¦ **Unmatched Transactions**
List any transactions found in
a. External file but not in the ERP file OR
b. ERP file but Not in External file
4. π§Ύ **Summary & Suggested Next Steps**
Explain what the discrepancies might mean and what the user should do next.
---
Here is the ERP data:
{erp_data}
---
Here is the External (Bank or Vendor) data:
{external_data}
"""
logger.info("π€ Sending request to OpenAI...")
logger.info(f"π Prompt length: {len(prompt)} characters")
response = openai.ChatCompletion.create(
model="gpt-5",
messages=[
{"role": "system",
"content": "You are a financial analyst who specializes in reconciling financial data."},
{"role": "user", "content": prompt}
],
temperature=1,
)
logger.info("β
Received response from OpenAI")
content = response.choices[0].message['content']
logger.info(f"π Response length: {len(content)} characters")
html = f"""
<div style="font-family: 'Segoe UI', sans-serif; line-height: 1.5;">
<h2>π Reconciliation Report</h2>
<pre>{content}</pre>
</div>
"""
# Calculate processing time
processing_time = (datetime.now() - session_start).total_seconds()
logger.info(f"β±οΈ Processing completed in {processing_time:.2f} seconds")
download_filename = f"reconciliation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
with open(download_filename, "w", encoding="utf-8") as f:
f.write(content)
yield "β
Done!", html, download_filename
# β
Upload the files + result to S3
try:
logger.info("π€ Starting S3 upload...")
upload_result = upload_files_to_s3(
erp_file_path=erp_file.name,
external_file_path=external_file.name,
content=html,
bucket_name=bucket_name
)
logger.info(f"β
Files uploaded successfully with session ID: {upload_result['session_id']}")
except Exception as upload_error:
logger.error(f"β S3 upload failed: {upload_error}")
# Don't fail the entire process if S3 upload fails
logger.info("β οΈ Continuing despite S3 upload failure")
logger.info(f"π Reconciliation process completed successfully!")
except Exception as e:
error_msg = f"Error during reconciliation: {e}"
logger.error(f"β {error_msg}")
logger.error(f"π Full error details: {str(e)}")
yield "β Error occurred", f"<h3>Error</h3><pre>{error_msg}</pre>", None
# β
Gradio UI
with gr.Blocks(css="""#company-logo { width: 25%; margin: auto; display: block; }""") as iface:
gr.Image("logo_Icon.png", elem_id="company-logo", label="Beiing Human")
gr.Markdown("## π ERP vs Bank/Vendor Reconciliation Tool")
with gr.Row():
erp_file = gr.File(label="π Upload ERP Statement (CSV only)", type="filepath", file_types=[".csv"])
external_file = gr.File(label="π¦ Upload Bank or Vendor Statement (CSV only)", type="filepath", file_types=[".csv"])
btn = gr.Button("π Reconcile")
status = gr.Markdown()
result = gr.HTML()
download = gr.File(label="β¬οΈ Download Reconciliation Report", type="filepath")
btn.click(
fn=reconcile_statements_openai,
inputs=[erp_file, external_file],
outputs=[status, result, download]
)
iface.launch() |