prithivMLmods's picture
update app
d1a91c5 verified
raw
history blame
11.3 kB
import gradio as gr
from gradio.themes.ocean import Ocean
import torch
import numpy as np
import supervision as sv
from transformers import (
Qwen3VLForConditionalGeneration,
Qwen3VLProcessor,
)
import json
import ast
import re
from PIL import Image
from spaces import GPU
# --- Constants and Configuration ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = "auto"
CATEGORIES = ["Query", "Caption", "Point", "Detect"]
PLACEHOLDERS = {
"Query": "What's in this image?",
"Caption": "Enter caption length: short, normal, or long",
"Point": "Select an object from suggestions or enter manually",
"Detect": "Select an object from suggestions or enter manually",
}
# --- Model Loading ---
# Load Qwen3-VL
qwen_model = Qwen3VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen3-VL-4B-Instruct",
dtype=DTYPE,
device_map=DEVICE,
).eval()
qwen_processor = Qwen3VLProcessor.from_pretrained(
"Qwen/Qwen3-VL-4B-Instruct",
)
# --- Utility Functions ---
def safe_parse_json(text: str):
text = text.strip()
text = re.sub(r"^```(json)?", "", text)
text = re.sub(r"```$", "", text)
text = text.strip()
try:
return json.loads(text)
except json.JSONDecodeError:
pass
try:
return ast.literal_eval(text)
except Exception:
return {}
@GPU
def get_suggested_objects(image: Image.Image):
"""Get suggested objects in the image using Qwen"""
if image is None:
return []
try:
prompt = "List the objects in the image in python list format."
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
],
}
]
inputs = qwen_processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
).to(DEVICE)
with torch.inference_mode():
generated_ids = qwen_model.generate(
**inputs,
max_new_tokens=128,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = qwen_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
suggested_objects = ast.literal_eval(output_text)
if isinstance(suggested_objects, list):
return suggested_objects[:3] if len(suggested_objects) > 3 else suggested_objects
return []
except Exception as e:
print(f"Error getting suggestions: {e}")
return []
def annotate_image(image: Image.Image, result: dict):
if not isinstance(image, Image.Image) or not isinstance(result, dict):
return image
original_width, original_height = image.size
# Handle Point annotations
if "points" in result and result["points"]:
points_list = [
[int(p["x"] * original_width), int(p["y"] * original_height)]
for p in result.get("points", [])
]
if not points_list:
return image
points_array = np.array(points_list).reshape(1, -1, 2)
key_points = sv.KeyPoints(xy=points_array)
vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
return vertex_annotator.annotate(scene=image.copy(), key_points=key_points)
# Handle Detection annotations
if "objects" in result and result["objects"]:
# Manually create detections from the Qwen output format
boxes = []
for obj in result["objects"]:
x_min = obj.get("x_min", 0.0) * original_width
y_min = obj.get("y_min", 0.0) * original_height
x_max = obj.get("x_max", 0.0) * original_width
y_max = obj.get("y_max", 0.0) * original_height
boxes.append([x_min, y_min, x_max, y_max])
if not boxes:
return image
detections = sv.Detections(xyxy=np.array(boxes))
if len(detections) == 0:
return image
box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=5)
return box_annotator.annotate(scene=image.copy(), detections=detections)
return image
# --- Inference Functions ---
def run_qwen_inference(image: Image.Image, prompt: str):
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
],
}
]
inputs = qwen_processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
).to(DEVICE)
with torch.inference_mode():
generated_ids = qwen_model.generate(
**inputs,
max_new_tokens=512,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
return qwen_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
@GPU
def process_qwen(image: Image.Image, category: str, prompt: str):
if category == "Query":
return run_qwen_inference(image, prompt), {}
elif category == "Caption":
full_prompt = f"Provide a {prompt} length caption for the image."
return run_qwen_inference(image, full_prompt), {}
elif category == "Point":
full_prompt = (
f"Provide 2d point coordinates for {prompt}. Report in JSON format."
)
output_text = run_qwen_inference(image, full_prompt)
parsed_json = safe_parse_json(output_text)
points_result = {"points": []}
if isinstance(parsed_json, list):
for item in parsed_json:
if "point_2d" in item and len(item["point_2d"]) == 2:
x, y = item["point_2d"]
points_result["points"].append({"x": x / 1000.0, "y": y / 1000.0})
return json.dumps(points_result, indent=2), points_result
elif category == "Detect":
full_prompt = (
f"Provide bounding box coordinates for {prompt}. Report in JSON format."
)
output_text = run_qwen_inference(image, full_prompt)
parsed_json = safe_parse_json(output_text)
objects_result = {"objects": []}
if isinstance(parsed_json, list):
for item in parsed_json:
if "bbox_2d" in item and len(item["bbox_2d"]) == 4:
xmin, ymin, xmax, ymax = item["bbox_2d"]
objects_result["objects"].append(
{
"x_min": xmin / 1000.0,
"y_min": ymin / 1000.0,
"x_max": xmax / 1000.0,
"y_max": ymax / 1000.0,
}
)
return json.dumps(objects_result, indent=2), objects_result
return "Invalid category", {}
# --- Gradio Interface Logic ---
def on_category_and_image_change(image, category):
"""Generate suggestions when category changes"""
text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)
if category == "Caption":
return gr.Radio(choices=["short", "normal", "long"], visible=True, label="Caption Length"), text_box
if image is None or category not in ["Point", "Detect"]:
return gr.Radio(choices=[], visible=False), text_box
suggestions = get_suggested_objects(image)
if suggestions:
return gr.Radio(choices=suggestions, visible=True, interactive=True, label="Suggestions"), text_box
else:
return gr.Radio(choices=[], visible=False), text_box
def update_prompt_from_radio(selected_object):
"""Update prompt textbox when a radio option is selected"""
return gr.Textbox(value=selected_object) if selected_object else gr.Textbox(value="")
def process_inputs(image, category, prompt):
if image is None:
raise gr.Error("Please upload an image.")
if not prompt:
raise gr.Error("Please provide a prompt.")
image.thumbnail((512, 512))
qwen_text, qwen_data = process_qwen(image, category, prompt)
qwen_annotated_image = annotate_image(image.copy(), qwen_data)
return qwen_annotated_image, qwen_text
css_hide_share = """
button#gradio-share-link-button-0 {
display: none !important;
}
"""
# --- Gradio UI Layout ---
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
gr.Markdown("# 👓 Object Understanding with Qwen3-VL")
gr.Markdown(
"### Explore object detection, visual grounding, and keypoint detection through natural language prompts."
)
gr.Markdown(
"*Powered by [Qwen/Qwen3-VL-4B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct).*"
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image")
category_select = gr.Radio(
choices=CATEGORIES,
value=CATEGORIES[0],
label="Select Task Category",
interactive=True,
)
suggestions_radio = gr.Radio(
choices=[],
label="Suggestions",
visible=False,
interactive=True,
)
prompt_input = gr.Textbox(
placeholder=PLACEHOLDERS[CATEGORIES[0]],
label="Prompt",
lines=2,
)
submit_btn = gr.Button("Process Image", variant="primary")
with gr.Column(scale=2):
qwen_img_output = gr.Image(label="Annotated Image")
qwen_text_output = gr.Textbox(
label="Text Output", lines=10, interactive=False
)
gr.Examples(
examples=[
["examples/example_1.jpg", "Query", "How many cars are in the image?"],
["examples/example_1.jpg", "Caption", "short"],
["examples/example_2.JPG", "Point", "the person's face"],
["examples/example_2.JPG", "Detect", "the person"],
],
inputs=[image_input, category_select, prompt_input],
)
# --- Event Listeners ---
category_select.change(
fn=on_category_and_image_change,
inputs=[image_input, category_select],
outputs=[suggestions_radio, prompt_input],
)
image_input.change(
fn=on_category_and_image_change,
inputs=[image_input, category_select],
outputs=[suggestions_radio, prompt_input],
)
suggestions_radio.change(
fn=update_prompt_from_radio,
inputs=[suggestions_radio],
outputs=[prompt_input],
)
submit_btn.click(
fn=process_inputs,
inputs=[image_input, category_select, prompt_input],
outputs=[qwen_img_output, qwen_text_output],
)
if __name__ == "__main__":
demo.launch()