Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -20,7 +20,7 @@ DTYPE = "auto"
|
|
| 20 |
CATEGORIES = ["Query", "Caption", "Point", "Detect"]
|
| 21 |
PLACEHOLDERS = {
|
| 22 |
"Query": "What's in this image?",
|
| 23 |
-
"Caption": "
|
| 24 |
"Point": "Select an object from suggestions or enter manually",
|
| 25 |
"Detect": "Select an object from suggestions or enter manually",
|
| 26 |
}
|
|
@@ -39,9 +39,7 @@ qwen_processor = Qwen3VLProcessor.from_pretrained(
|
|
| 39 |
|
| 40 |
# --- Utility Functions ---
|
| 41 |
def safe_parse_json(text: str):
|
| 42 |
-
"""Safely parse a string that may be JSON or a Python literal."""
|
| 43 |
text = text.strip()
|
| 44 |
-
# Remove markdown code blocks
|
| 45 |
text = re.sub(r"^```(json)?", "", text)
|
| 46 |
text = re.sub(r"```$", "", text)
|
| 47 |
text = text.strip()
|
|
@@ -50,127 +48,142 @@ def safe_parse_json(text: str):
|
|
| 50 |
except json.JSONDecodeError:
|
| 51 |
pass
|
| 52 |
try:
|
| 53 |
-
# Fallback to literal_eval for Python-like dictionary/list strings
|
| 54 |
return ast.literal_eval(text)
|
| 55 |
except Exception:
|
| 56 |
return {}
|
| 57 |
|
| 58 |
-
# --- Inference Functions ---
|
| 59 |
-
def run_qwen_inference(image: Image.Image, prompt: str):
|
| 60 |
-
"""Core function to run inference with the Qwen model."""
|
| 61 |
-
messages = [
|
| 62 |
-
{
|
| 63 |
-
"role": "user",
|
| 64 |
-
"content": [
|
| 65 |
-
{"type": "image", "image": image},
|
| 66 |
-
{"type": "text", "text": prompt},
|
| 67 |
-
],
|
| 68 |
-
}
|
| 69 |
-
]
|
| 70 |
-
inputs = qwen_processor.apply_chat_template(
|
| 71 |
-
messages,
|
| 72 |
-
tokenize=True,
|
| 73 |
-
add_generation_prompt=True,
|
| 74 |
-
return_dict=True,
|
| 75 |
-
return_tensors="pt",
|
| 76 |
-
).to(DEVICE)
|
| 77 |
-
|
| 78 |
-
with torch.inference_mode():
|
| 79 |
-
generated_ids = qwen_model.generate(
|
| 80 |
-
**inputs,
|
| 81 |
-
max_new_tokens=512,
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
generated_ids_trimmed = [
|
| 85 |
-
out_ids[len(in_ids) :]
|
| 86 |
-
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 87 |
-
]
|
| 88 |
-
output_text = qwen_processor.batch_decode(
|
| 89 |
-
generated_ids_trimmed,
|
| 90 |
-
skip_special_tokens=True,
|
| 91 |
-
clean_up_tokenization_spaces=False,
|
| 92 |
-
)[0]
|
| 93 |
-
return output_text
|
| 94 |
-
|
| 95 |
|
| 96 |
@GPU
|
| 97 |
def get_suggested_objects(image: Image.Image):
|
| 98 |
-
"""Get suggested objects in the image using Qwen
|
| 99 |
if image is None:
|
| 100 |
return []
|
|
|
|
| 101 |
try:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
return []
|
| 117 |
except Exception as e:
|
| 118 |
-
print(f"Error getting suggestions
|
| 119 |
return []
|
| 120 |
|
| 121 |
|
| 122 |
def annotate_image(image: Image.Image, result: dict):
|
| 123 |
-
"""Annotates the image with points or bounding boxes based on model output."""
|
| 124 |
if not isinstance(image, Image.Image) or not isinstance(result, dict):
|
| 125 |
return image
|
| 126 |
|
| 127 |
original_width, original_height = image.size
|
| 128 |
-
scene_np = np.array(image.copy())
|
| 129 |
|
| 130 |
# Handle Point annotations
|
| 131 |
if "points" in result and result["points"]:
|
| 132 |
-
points_list = [
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
points_list.append([x, y])
|
| 137 |
-
|
| 138 |
if not points_list:
|
| 139 |
return image
|
| 140 |
|
| 141 |
-
points_array = np.array(points_list).reshape(-1, 2)
|
| 142 |
key_points = sv.KeyPoints(xy=points_array)
|
| 143 |
vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
|
| 144 |
-
|
| 145 |
-
scene=scene_np, key_points=key_points
|
| 146 |
-
)
|
| 147 |
-
return Image.fromarray(annotated_image_np)
|
| 148 |
|
| 149 |
# Handle Detection annotations
|
| 150 |
if "objects" in result and result["objects"]:
|
|
|
|
| 151 |
boxes = []
|
| 152 |
for obj in result["objects"]:
|
| 153 |
-
x_min = obj
|
| 154 |
-
y_min = obj
|
| 155 |
-
x_max = obj
|
| 156 |
-
y_max = obj
|
| 157 |
boxes.append([x_min, y_min, x_max, y_max])
|
| 158 |
|
| 159 |
if not boxes:
|
| 160 |
return image
|
| 161 |
-
|
| 162 |
detections = sv.Detections(xyxy=np.array(boxes))
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
)
|
| 169 |
-
return Image.fromarray(annotated_image_np)
|
| 170 |
|
| 171 |
return image
|
| 172 |
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
@GPU
|
| 175 |
def process_qwen(image: Image.Image, category: str, prompt: str):
|
| 176 |
if category == "Query":
|
|
@@ -216,59 +229,56 @@ def process_qwen(image: Image.Image, category: str, prompt: str):
|
|
| 216 |
|
| 217 |
# --- Gradio Interface Logic ---
|
| 218 |
def on_category_and_image_change(image, category):
|
| 219 |
-
"""Generate suggestions when category
|
| 220 |
text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)
|
| 221 |
|
| 222 |
if category == "Caption":
|
| 223 |
-
return gr.Radio(choices=["short", "normal", "long"], label="Caption Length"
|
| 224 |
-
|
| 225 |
if image is None or category not in ["Point", "Detect"]:
|
| 226 |
return gr.Radio(choices=[], visible=False), text_box
|
| 227 |
|
| 228 |
suggestions = get_suggested_objects(image)
|
| 229 |
if suggestions:
|
| 230 |
-
return gr.Radio(choices=suggestions,
|
| 231 |
else:
|
| 232 |
return gr.Radio(choices=[], visible=False), text_box
|
| 233 |
|
| 234 |
|
| 235 |
def update_prompt_from_radio(selected_object):
|
| 236 |
-
"""Update prompt textbox when a radio option is selected
|
| 237 |
-
if selected_object
|
| 238 |
-
return gr.Textbox(value=selected_object)
|
| 239 |
-
return gr.Textbox(value="")
|
| 240 |
|
| 241 |
|
| 242 |
def process_inputs(image, category, prompt):
|
| 243 |
-
"""Main function to handle the user's request."""
|
| 244 |
if image is None:
|
| 245 |
raise gr.Error("Please upload an image.")
|
| 246 |
-
if not prompt
|
| 247 |
-
|
| 248 |
-
if category == "Caption" and not prompt:
|
| 249 |
-
prompt = "normal" # default
|
| 250 |
-
else:
|
| 251 |
-
raise gr.Error("Please provide a prompt or select a suggestion.")
|
| 252 |
|
| 253 |
-
|
| 254 |
-
image.thumbnail((1024, 1024))
|
| 255 |
|
| 256 |
-
# Process with Qwen
|
| 257 |
qwen_text, qwen_data = process_qwen(image, category, prompt)
|
| 258 |
-
qwen_annotated_image = annotate_image(image, qwen_data)
|
| 259 |
|
| 260 |
return qwen_annotated_image, qwen_text
|
| 261 |
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
# --- Gradio UI Layout ---
|
| 264 |
-
with gr.Blocks(theme=Ocean()) as demo:
|
| 265 |
gr.Markdown("# 👓 Object Understanding with Qwen3-VL")
|
| 266 |
gr.Markdown(
|
| 267 |
"### Explore object detection, visual grounding, and keypoint detection through natural language prompts."
|
| 268 |
)
|
| 269 |
-
gr.Markdown(
|
| 270 |
-
|
| 271 |
-
|
| 272 |
|
| 273 |
with gr.Row():
|
| 274 |
with gr.Column(scale=1):
|
|
@@ -293,7 +303,6 @@ with gr.Blocks(theme=Ocean()) as demo:
|
|
| 293 |
submit_btn = gr.Button("Process Image", variant="primary")
|
| 294 |
|
| 295 |
with gr.Column(scale=2):
|
| 296 |
-
gr.Markdown("### Qwen/Qwen3-VL-4B-Instruct Output")
|
| 297 |
qwen_img_output = gr.Image(label="Annotated Image")
|
| 298 |
qwen_text_output = gr.Textbox(
|
| 299 |
label="Text Output", lines=10, interactive=False
|
|
@@ -302,15 +311,14 @@ with gr.Blocks(theme=Ocean()) as demo:
|
|
| 302 |
gr.Examples(
|
| 303 |
examples=[
|
| 304 |
["examples/example_1.jpg", "Query", "How many cars are in the image?"],
|
| 305 |
-
["examples/example_1.jpg", "
|
| 306 |
["examples/example_2.JPG", "Point", "the person's face"],
|
| 307 |
-
["examples/example_2.JPG", "
|
| 308 |
],
|
| 309 |
inputs=[image_input, category_select, prompt_input],
|
| 310 |
)
|
| 311 |
|
| 312 |
# --- Event Listeners ---
|
| 313 |
-
# When image or category changes, update suggestions
|
| 314 |
category_select.change(
|
| 315 |
fn=on_category_and_image_change,
|
| 316 |
inputs=[image_input, category_select],
|
|
@@ -322,14 +330,12 @@ with gr.Blocks(theme=Ocean()) as demo:
|
|
| 322 |
outputs=[suggestions_radio, prompt_input],
|
| 323 |
)
|
| 324 |
|
| 325 |
-
# When a suggestion is clicked, update the prompt box
|
| 326 |
suggestions_radio.change(
|
| 327 |
fn=update_prompt_from_radio,
|
| 328 |
inputs=[suggestions_radio],
|
| 329 |
outputs=[prompt_input],
|
| 330 |
)
|
| 331 |
|
| 332 |
-
# Main submission action
|
| 333 |
submit_btn.click(
|
| 334 |
fn=process_inputs,
|
| 335 |
inputs=[image_input, category_select, prompt_input],
|
|
@@ -337,4 +343,4 @@ with gr.Blocks(theme=Ocean()) as demo:
|
|
| 337 |
)
|
| 338 |
|
| 339 |
if __name__ == "__main__":
|
| 340 |
-
demo.launch(
|
|
|
|
| 20 |
CATEGORIES = ["Query", "Caption", "Point", "Detect"]
|
| 21 |
PLACEHOLDERS = {
|
| 22 |
"Query": "What's in this image?",
|
| 23 |
+
"Caption": "Enter caption length: short, normal, or long",
|
| 24 |
"Point": "Select an object from suggestions or enter manually",
|
| 25 |
"Detect": "Select an object from suggestions or enter manually",
|
| 26 |
}
|
|
|
|
| 39 |
|
| 40 |
# --- Utility Functions ---
|
| 41 |
def safe_parse_json(text: str):
|
|
|
|
| 42 |
text = text.strip()
|
|
|
|
| 43 |
text = re.sub(r"^```(json)?", "", text)
|
| 44 |
text = re.sub(r"```$", "", text)
|
| 45 |
text = text.strip()
|
|
|
|
| 48 |
except json.JSONDecodeError:
|
| 49 |
pass
|
| 50 |
try:
|
|
|
|
| 51 |
return ast.literal_eval(text)
|
| 52 |
except Exception:
|
| 53 |
return {}
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
@GPU
|
| 57 |
def get_suggested_objects(image: Image.Image):
|
| 58 |
+
"""Get suggested objects in the image using Qwen"""
|
| 59 |
if image is None:
|
| 60 |
return []
|
| 61 |
+
|
| 62 |
try:
|
| 63 |
+
prompt = "List the objects in the image in python list format."
|
| 64 |
+
messages = [
|
| 65 |
+
{
|
| 66 |
+
"role": "user",
|
| 67 |
+
"content": [
|
| 68 |
+
{"type": "image", "image": image},
|
| 69 |
+
{"type": "text", "text": prompt},
|
| 70 |
+
],
|
| 71 |
+
}
|
| 72 |
+
]
|
| 73 |
+
inputs = qwen_processor.apply_chat_template(
|
| 74 |
+
messages,
|
| 75 |
+
tokenize=True,
|
| 76 |
+
add_generation_prompt=True,
|
| 77 |
+
return_dict=True,
|
| 78 |
+
return_tensors="pt",
|
| 79 |
+
).to(DEVICE)
|
| 80 |
+
|
| 81 |
+
with torch.inference_mode():
|
| 82 |
+
generated_ids = qwen_model.generate(
|
| 83 |
+
**inputs,
|
| 84 |
+
max_new_tokens=128,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
generated_ids_trimmed = [
|
| 88 |
+
out_ids[len(in_ids) :]
|
| 89 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 90 |
+
]
|
| 91 |
+
output_text = qwen_processor.batch_decode(
|
| 92 |
+
generated_ids_trimmed,
|
| 93 |
+
skip_special_tokens=True,
|
| 94 |
+
clean_up_tokenization_spaces=False,
|
| 95 |
+
)[0]
|
| 96 |
+
|
| 97 |
+
suggested_objects = ast.literal_eval(output_text)
|
| 98 |
+
if isinstance(suggested_objects, list):
|
| 99 |
+
return suggested_objects[:3] if len(suggested_objects) > 3 else suggested_objects
|
| 100 |
return []
|
| 101 |
except Exception as e:
|
| 102 |
+
print(f"Error getting suggestions: {e}")
|
| 103 |
return []
|
| 104 |
|
| 105 |
|
| 106 |
def annotate_image(image: Image.Image, result: dict):
|
|
|
|
| 107 |
if not isinstance(image, Image.Image) or not isinstance(result, dict):
|
| 108 |
return image
|
| 109 |
|
| 110 |
original_width, original_height = image.size
|
|
|
|
| 111 |
|
| 112 |
# Handle Point annotations
|
| 113 |
if "points" in result and result["points"]:
|
| 114 |
+
points_list = [
|
| 115 |
+
[int(p["x"] * original_width), int(p["y"] * original_height)]
|
| 116 |
+
for p in result.get("points", [])
|
| 117 |
+
]
|
|
|
|
|
|
|
| 118 |
if not points_list:
|
| 119 |
return image
|
| 120 |
|
| 121 |
+
points_array = np.array(points_list).reshape(1, -1, 2)
|
| 122 |
key_points = sv.KeyPoints(xy=points_array)
|
| 123 |
vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
|
| 124 |
+
return vertex_annotator.annotate(scene=image.copy(), key_points=key_points)
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
# Handle Detection annotations
|
| 127 |
if "objects" in result and result["objects"]:
|
| 128 |
+
# Manually create detections from the Qwen output format
|
| 129 |
boxes = []
|
| 130 |
for obj in result["objects"]:
|
| 131 |
+
x_min = obj.get("x_min", 0.0) * original_width
|
| 132 |
+
y_min = obj.get("y_min", 0.0) * original_height
|
| 133 |
+
x_max = obj.get("x_max", 0.0) * original_width
|
| 134 |
+
y_max = obj.get("y_max", 0.0) * original_height
|
| 135 |
boxes.append([x_min, y_min, x_max, y_max])
|
| 136 |
|
| 137 |
if not boxes:
|
| 138 |
return image
|
| 139 |
+
|
| 140 |
detections = sv.Detections(xyxy=np.array(boxes))
|
| 141 |
+
|
| 142 |
+
if len(detections) == 0:
|
| 143 |
+
return image
|
| 144 |
+
|
| 145 |
+
box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=5)
|
| 146 |
+
return box_annotator.annotate(scene=image.copy(), detections=detections)
|
|
|
|
| 147 |
|
| 148 |
return image
|
| 149 |
|
| 150 |
|
| 151 |
+
# --- Inference Functions ---
|
| 152 |
+
def run_qwen_inference(image: Image.Image, prompt: str):
|
| 153 |
+
messages = [
|
| 154 |
+
{
|
| 155 |
+
"role": "user",
|
| 156 |
+
"content": [
|
| 157 |
+
{"type": "image", "image": image},
|
| 158 |
+
{"type": "text", "text": prompt},
|
| 159 |
+
],
|
| 160 |
+
}
|
| 161 |
+
]
|
| 162 |
+
inputs = qwen_processor.apply_chat_template(
|
| 163 |
+
messages,
|
| 164 |
+
tokenize=True,
|
| 165 |
+
add_generation_prompt=True,
|
| 166 |
+
return_dict=True,
|
| 167 |
+
return_tensors="pt",
|
| 168 |
+
).to(DEVICE)
|
| 169 |
+
|
| 170 |
+
with torch.inference_mode():
|
| 171 |
+
generated_ids = qwen_model.generate(
|
| 172 |
+
**inputs,
|
| 173 |
+
max_new_tokens=512,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
generated_ids_trimmed = [
|
| 177 |
+
out_ids[len(in_ids) :]
|
| 178 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 179 |
+
]
|
| 180 |
+
return qwen_processor.batch_decode(
|
| 181 |
+
generated_ids_trimmed,
|
| 182 |
+
skip_special_tokens=True,
|
| 183 |
+
clean_up_tokenization_spaces=False,
|
| 184 |
+
)[0]
|
| 185 |
+
|
| 186 |
+
|
| 187 |
@GPU
|
| 188 |
def process_qwen(image: Image.Image, category: str, prompt: str):
|
| 189 |
if category == "Query":
|
|
|
|
| 229 |
|
| 230 |
# --- Gradio Interface Logic ---
|
| 231 |
def on_category_and_image_change(image, category):
|
| 232 |
+
"""Generate suggestions when category changes"""
|
| 233 |
text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)
|
| 234 |
|
| 235 |
if category == "Caption":
|
| 236 |
+
return gr.Radio(choices=["short", "normal", "long"], visible=True, label="Caption Length"), text_box
|
| 237 |
+
|
| 238 |
if image is None or category not in ["Point", "Detect"]:
|
| 239 |
return gr.Radio(choices=[], visible=False), text_box
|
| 240 |
|
| 241 |
suggestions = get_suggested_objects(image)
|
| 242 |
if suggestions:
|
| 243 |
+
return gr.Radio(choices=suggestions, visible=True, interactive=True, label="Suggestions"), text_box
|
| 244 |
else:
|
| 245 |
return gr.Radio(choices=[], visible=False), text_box
|
| 246 |
|
| 247 |
|
| 248 |
def update_prompt_from_radio(selected_object):
|
| 249 |
+
"""Update prompt textbox when a radio option is selected"""
|
| 250 |
+
return gr.Textbox(value=selected_object) if selected_object else gr.Textbox(value="")
|
|
|
|
|
|
|
| 251 |
|
| 252 |
|
| 253 |
def process_inputs(image, category, prompt):
|
|
|
|
| 254 |
if image is None:
|
| 255 |
raise gr.Error("Please upload an image.")
|
| 256 |
+
if not prompt:
|
| 257 |
+
raise gr.Error("Please provide a prompt.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
image.thumbnail((512, 512))
|
|
|
|
| 260 |
|
|
|
|
| 261 |
qwen_text, qwen_data = process_qwen(image, category, prompt)
|
| 262 |
+
qwen_annotated_image = annotate_image(image.copy(), qwen_data)
|
| 263 |
|
| 264 |
return qwen_annotated_image, qwen_text
|
| 265 |
|
| 266 |
|
| 267 |
+
css_hide_share = """
|
| 268 |
+
button#gradio-share-link-button-0 {
|
| 269 |
+
display: none !important;
|
| 270 |
+
}
|
| 271 |
+
"""
|
| 272 |
+
|
| 273 |
# --- Gradio UI Layout ---
|
| 274 |
+
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
|
| 275 |
gr.Markdown("# 👓 Object Understanding with Qwen3-VL")
|
| 276 |
gr.Markdown(
|
| 277 |
"### Explore object detection, visual grounding, and keypoint detection through natural language prompts."
|
| 278 |
)
|
| 279 |
+
gr.Markdown(
|
| 280 |
+
"*Powered by [Qwen/Qwen3-VL-4B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct).*"
|
| 281 |
+
)
|
| 282 |
|
| 283 |
with gr.Row():
|
| 284 |
with gr.Column(scale=1):
|
|
|
|
| 303 |
submit_btn = gr.Button("Process Image", variant="primary")
|
| 304 |
|
| 305 |
with gr.Column(scale=2):
|
|
|
|
| 306 |
qwen_img_output = gr.Image(label="Annotated Image")
|
| 307 |
qwen_text_output = gr.Textbox(
|
| 308 |
label="Text Output", lines=10, interactive=False
|
|
|
|
| 311 |
gr.Examples(
|
| 312 |
examples=[
|
| 313 |
["examples/example_1.jpg", "Query", "How many cars are in the image?"],
|
| 314 |
+
["examples/example_1.jpg", "Caption", "short"],
|
| 315 |
["examples/example_2.JPG", "Point", "the person's face"],
|
| 316 |
+
["examples/example_2.JPG", "Detect", "the person"],
|
| 317 |
],
|
| 318 |
inputs=[image_input, category_select, prompt_input],
|
| 319 |
)
|
| 320 |
|
| 321 |
# --- Event Listeners ---
|
|
|
|
| 322 |
category_select.change(
|
| 323 |
fn=on_category_and_image_change,
|
| 324 |
inputs=[image_input, category_select],
|
|
|
|
| 330 |
outputs=[suggestions_radio, prompt_input],
|
| 331 |
)
|
| 332 |
|
|
|
|
| 333 |
suggestions_radio.change(
|
| 334 |
fn=update_prompt_from_radio,
|
| 335 |
inputs=[suggestions_radio],
|
| 336 |
outputs=[prompt_input],
|
| 337 |
)
|
| 338 |
|
|
|
|
| 339 |
submit_btn.click(
|
| 340 |
fn=process_inputs,
|
| 341 |
inputs=[image_input, category_select, prompt_input],
|
|
|
|
| 343 |
)
|
| 344 |
|
| 345 |
if __name__ == "__main__":
|
| 346 |
+
demo.launch()
|