Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -101,12 +101,58 @@ app.add_middleware(SlowAPIMiddleware)
|
|
| 101 |
app.add_middleware(
|
| 102 |
CORSMiddleware,
|
| 103 |
allow_origins=["*"],
|
|
|
|
| 104 |
allow_methods=["*"],
|
| 105 |
allow_headers=["*"],
|
| 106 |
)
|
| 107 |
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
SUPPORTED_FILE_TYPES = {
|
| 111 |
"docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png", "txt"
|
| 112 |
}
|
|
@@ -498,6 +544,146 @@ def validate_french_response(text: str) -> str:
|
|
| 498 |
return text.capitalize()
|
| 499 |
|
| 500 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 501 |
|
| 502 |
|
| 503 |
|
|
|
|
| 101 |
app.add_middleware(
|
| 102 |
CORSMiddleware,
|
| 103 |
allow_origins=["*"],
|
| 104 |
+
allow_credentials=True,
|
| 105 |
allow_methods=["*"],
|
| 106 |
allow_headers=["*"],
|
| 107 |
)
|
| 108 |
|
| 109 |
+
|
| 110 |
+
UPLOAD_FOLDER = "uploads"
|
| 111 |
+
OUTPUT_FOLDER = "static"
|
| 112 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 113 |
+
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
|
| 114 |
+
|
| 115 |
+
# Lightweight model configuration
|
| 116 |
+
MODEL_NAME = "distilgpt2"
|
| 117 |
+
TIMEOUT = 10 # seconds
|
| 118 |
+
MAX_ROWS = 100
|
| 119 |
+
MAX_COLUMNS = 5
|
| 120 |
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
| 121 |
+
try:
|
| 122 |
+
visualization_model = pipeline(
|
| 123 |
+
"text-generation",
|
| 124 |
+
model=MODEL_NAME,
|
| 125 |
+
device=-1, # CPU
|
| 126 |
+
framework="pt"
|
| 127 |
+
)
|
| 128 |
+
except Exception as e:
|
| 129 |
+
print(f"Model loading failed: {str(e)}")
|
| 130 |
+
visualization_model = None
|
| 131 |
+
|
| 132 |
+
executor = ThreadPoolExecutor(max_workers=2)
|
| 133 |
+
|
| 134 |
+
def safe_read_file(file_content, file_ext):
|
| 135 |
+
"""Robust file reading with size limits"""
|
| 136 |
+
file_like = io.BytesIO(file_content)
|
| 137 |
+
if file_ext == 'csv':
|
| 138 |
+
return pd.read_csv(file_like, nrows=MAX_ROWS)
|
| 139 |
+
return pd.read_excel(file_like, nrows=MAX_ROWS)
|
| 140 |
+
|
| 141 |
+
def generate_simple_plot(df, chart_type):
|
| 142 |
+
"""Fallback plotting function"""
|
| 143 |
+
plt.figure(figsize=(8, 5))
|
| 144 |
+
numeric_cols = df.select_dtypes(include='number').columns
|
| 145 |
+
|
| 146 |
+
if len(numeric_cols) >= 2:
|
| 147 |
+
df[numeric_cols[:2]].plot(kind=chart_type if chart_type in ['bar', 'line', 'scatter'] else 'bar')
|
| 148 |
+
elif len(numeric_cols) == 1:
|
| 149 |
+
df[numeric_cols[0]].plot(kind='bar')
|
| 150 |
+
else:
|
| 151 |
+
df.iloc[:, 0].value_counts().plot(kind='bar')
|
| 152 |
+
|
| 153 |
+
plt.tight_layout()
|
| 154 |
+
|
| 155 |
+
|
| 156 |
SUPPORTED_FILE_TYPES = {
|
| 157 |
"docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png", "txt"
|
| 158 |
}
|
|
|
|
| 544 |
return text.capitalize()
|
| 545 |
|
| 546 |
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
@app.post("/generate-visualization")
|
| 550 |
+
async def generate_visualization(
|
| 551 |
+
file: UploadFile = File(...),
|
| 552 |
+
request: str = Form(...),
|
| 553 |
+
chart_type: Optional[str] = Form("auto")
|
| 554 |
+
):
|
| 555 |
+
try:
|
| 556 |
+
# 1. Validate input
|
| 557 |
+
file_ext = file.filename.split('.')[-1].lower()
|
| 558 |
+
if file_ext not in ['csv', 'xlsx', 'xls']:
|
| 559 |
+
raise HTTPException(400, "Only CSV/Excel files accepted")
|
| 560 |
+
|
| 561 |
+
file_content = await file.read()
|
| 562 |
+
if len(file_content) > MAX_FILE_SIZE:
|
| 563 |
+
raise HTTPException(400, f"File size exceeds {MAX_FILE_SIZE//1024}KB limit")
|
| 564 |
+
|
| 565 |
+
# 2. Process data
|
| 566 |
+
df = await asyncio.get_event_loop().run_in_executor(
|
| 567 |
+
executor,
|
| 568 |
+
lambda: safe_read_file(file_content, file_ext)
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
# Simplify dataframe
|
| 572 |
+
df = df.iloc[:, :MAX_COLUMNS].dropna(how='all')
|
| 573 |
+
if df.empty:
|
| 574 |
+
raise HTTPException(400, "No plottable data found")
|
| 575 |
+
|
| 576 |
+
# 3. Generate visualization
|
| 577 |
+
plt.switch_backend('Agg')
|
| 578 |
+
generated_code = None
|
| 579 |
+
|
| 580 |
+
if visualization_model:
|
| 581 |
+
try:
|
| 582 |
+
prompt = f"Create {chart_type} chart for {list(df.columns)}. Python code only:"
|
| 583 |
+
code = visualization_model(
|
| 584 |
+
prompt,
|
| 585 |
+
max_length=300,
|
| 586 |
+
num_return_sequences=1,
|
| 587 |
+
temperature=0.3
|
| 588 |
+
)[0]['generated_text'].split("```python")[-1].split("```")[0].strip()
|
| 589 |
+
|
| 590 |
+
if code:
|
| 591 |
+
generated_code = code
|
| 592 |
+
exec(code, {'df': df, 'plt': plt})
|
| 593 |
+
except Exception as e:
|
| 594 |
+
print(f"Model failed, using fallback: {e}")
|
| 595 |
+
generate_simple_plot(df, chart_type)
|
| 596 |
+
numeric_cols = df.select_dtypes(include='number').columns.tolist()
|
| 597 |
+
if len(numeric_cols) >= 2:
|
| 598 |
+
cols = numeric_cols[:2]
|
| 599 |
+
generated_code = f"""
|
| 600 |
+
import pandas as pd
|
| 601 |
+
import matplotlib.pyplot as plt
|
| 602 |
+
data = {df[cols].to_dict()}
|
| 603 |
+
df = pd.DataFrame(data)
|
| 604 |
+
df.plot(kind='{chart_type if chart_type in ['bar', 'line', 'scatter'] else 'bar'}')
|
| 605 |
+
plt.tight_layout()
|
| 606 |
+
plt.show()
|
| 607 |
+
"""
|
| 608 |
+
elif len(numeric_cols) == 1:
|
| 609 |
+
generated_code = f"""
|
| 610 |
+
import pandas as pd
|
| 611 |
+
import matplotlib.pyplot as plt
|
| 612 |
+
data = {df[numeric_cols[0]].to_dict()}
|
| 613 |
+
df = pd.DataFrame(data)
|
| 614 |
+
df.plot(kind='bar')
|
| 615 |
+
plt.tight_layout()
|
| 616 |
+
plt.show()
|
| 617 |
+
"""
|
| 618 |
+
else:
|
| 619 |
+
generated_code = f"""
|
| 620 |
+
import pandas as pd
|
| 621 |
+
import matplotlib.pyplot as plt
|
| 622 |
+
data = {df.iloc[:, 0].value_counts().to_dict()}
|
| 623 |
+
df = pd.DataFrame(list(data.items()), columns=['Category', 'Count'])
|
| 624 |
+
df.plot(x='Category', y='Count', kind='bar')
|
| 625 |
+
plt.tight_layout()
|
| 626 |
+
plt.show()
|
| 627 |
+
"""
|
| 628 |
+
else:
|
| 629 |
+
generate_simple_plot(df, chart_type)
|
| 630 |
+
numeric_cols = df.select_dtypes(include='number').columns.tolist()
|
| 631 |
+
if len(numeric_cols) >= 2:
|
| 632 |
+
cols = numeric_cols[:2]
|
| 633 |
+
generated_code = f"""
|
| 634 |
+
import pandas as pd
|
| 635 |
+
import matplotlib.pyplot as plt
|
| 636 |
+
data = {df[cols].to_dict()}
|
| 637 |
+
df = pd.DataFrame(data)
|
| 638 |
+
df.plot(kind='{chart_type if chart_type in ['bar', 'line', 'scatter'] else 'bar'}')
|
| 639 |
+
plt.tight_layout()
|
| 640 |
+
plt.show()
|
| 641 |
+
"""
|
| 642 |
+
elif len(numeric_cols) == 1:
|
| 643 |
+
generated_code = f"""
|
| 644 |
+
import pandas as pd
|
| 645 |
+
import matplotlib.pyplot as plt
|
| 646 |
+
data = {df[numeric_cols[0]].to_dict()}
|
| 647 |
+
df = pd.DataFrame(data)
|
| 648 |
+
df.plot(kind='bar')
|
| 649 |
+
plt.tight_layout()
|
| 650 |
+
plt.show()
|
| 651 |
+
"""
|
| 652 |
+
else:
|
| 653 |
+
generated_code = f"""
|
| 654 |
+
import pandas as pd
|
| 655 |
+
import matplotlib.pyplot as plt
|
| 656 |
+
data = {df.iloc[:, 0].value_counts().to_dict()}
|
| 657 |
+
df = pd.DataFrame(list(data.items()), columns=['Category', 'Count'])
|
| 658 |
+
df.plot(x='Category', y='Count', kind='bar')
|
| 659 |
+
plt.tight_layout()
|
| 660 |
+
plt.show()
|
| 661 |
+
"""
|
| 662 |
+
|
| 663 |
+
# 4. Save output
|
| 664 |
+
output_id = uuid.uuid4().hex[:8]
|
| 665 |
+
image_path = f"{OUTPUT_FOLDER}/plot_{output_id}.png"
|
| 666 |
+
plt.savefig(image_path, bbox_inches='tight', dpi=80)
|
| 667 |
+
plt.close()
|
| 668 |
+
|
| 669 |
+
return JSONResponse({
|
| 670 |
+
"image_url": f"/static/plot_{output_id}.png",
|
| 671 |
+
"python_code": generated_code,
|
| 672 |
+
"columns": list(df.columns),
|
| 673 |
+
"note": "Visualization generated successfully"
|
| 674 |
+
})
|
| 675 |
+
|
| 676 |
+
except HTTPException:
|
| 677 |
+
raise
|
| 678 |
+
except Exception as e:
|
| 679 |
+
raise HTTPException(500, f"Processing error: {str(e)}")
|
| 680 |
+
|
| 681 |
+
@app.get("/static/{filename}")
|
| 682 |
+
async def serve_static(filename: str):
|
| 683 |
+
file_path = f"{OUTPUT_FOLDER}/{filename}"
|
| 684 |
+
if not os.path.exists(file_path):
|
| 685 |
+
raise HTTPException(404, "Image not found")
|
| 686 |
+
return FileResponse(file_path)
|
| 687 |
|
| 688 |
|
| 689 |
|