Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -296,496 +296,15 @@ def extract_text(content: bytes, file_ext: str) -> str:
|
|
| 296 |
|
| 297 |
|
| 298 |
|
| 299 |
-
# Visualization Models
|
| 300 |
-
class VisualizationRequest(BaseModel):
|
| 301 |
-
chart_type: str
|
| 302 |
-
x_column: Optional[str] = None
|
| 303 |
-
y_column: Optional[str] = None
|
| 304 |
-
hue_column: Optional[str] = None
|
| 305 |
-
title: Optional[str] = None
|
| 306 |
-
x_label: Optional[str] = None
|
| 307 |
-
y_label: Optional[str] = None
|
| 308 |
-
style: str = "seaborn-v0_8" # Updated default
|
| 309 |
-
filters: Optional[dict] = None
|
| 310 |
-
|
| 311 |
-
class NaturalLanguageRequest(BaseModel):
|
| 312 |
-
prompt: str
|
| 313 |
-
style: str = "seaborn-v0_8"
|
| 314 |
-
|
| 315 |
-
def validate_matplotlib_style(style: str) -> str:
|
| 316 |
-
"""Validate and return a valid matplotlib style"""
|
| 317 |
-
available_styles = plt.style.available
|
| 318 |
-
# Map legacy style names to current ones
|
| 319 |
-
style_mapping = {
|
| 320 |
-
'seaborn': 'seaborn-v0_8',
|
| 321 |
-
'seaborn-white': 'seaborn-v0_8-white',
|
| 322 |
-
'seaborn-dark': 'seaborn-v0_8-dark',
|
| 323 |
-
# Add other legacy mappings if needed
|
| 324 |
-
}
|
| 325 |
-
|
| 326 |
-
# Check if it's a legacy name we can map
|
| 327 |
-
if style in style_mapping:
|
| 328 |
-
return style_mapping[style]
|
| 329 |
-
|
| 330 |
-
# Check if it's a valid current style
|
| 331 |
-
if style in available_styles:
|
| 332 |
-
return style
|
| 333 |
-
|
| 334 |
-
logger.warning(f"Invalid style '{style}'. Available styles: {available_styles}")
|
| 335 |
-
return "seaborn-v0_8" # Default fallback to current seaborn style
|
| 336 |
|
| 337 |
|
| 338 |
|
| 339 |
-
|
| 340 |
-
def generate_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
|
| 341 |
-
"""Generate Python code for visualization with enhanced NaN handling and type safety"""
|
| 342 |
-
# Validate style
|
| 343 |
-
valid_style = validate_matplotlib_style(request.style)
|
| 344 |
-
|
| 345 |
-
# Convert DataFrame to dict with proper NaN handling
|
| 346 |
-
df_dict = df.where(pd.notnull(df), None).to_dict(orient='list')
|
| 347 |
-
|
| 348 |
-
code_lines = [
|
| 349 |
-
"import matplotlib.pyplot as plt",
|
| 350 |
-
"import seaborn as sns",
|
| 351 |
-
"import pandas as pd",
|
| 352 |
-
"import numpy as np",
|
| 353 |
-
"",
|
| 354 |
-
"# Data preparation with NaN handling and type conversion",
|
| 355 |
-
f"raw_data = {df_dict}",
|
| 356 |
-
"df = pd.DataFrame(raw_data)",
|
| 357 |
-
"",
|
| 358 |
-
"# Automatic type conversion and cleaning",
|
| 359 |
-
"for col in df.columns:",
|
| 360 |
-
" # Convert strings that should be numeric",
|
| 361 |
-
" if pd.api.types.is_string_dtype(df[col]):",
|
| 362 |
-
" try:",
|
| 363 |
-
" df[col] = pd.to_numeric(df[col])",
|
| 364 |
-
" continue",
|
| 365 |
-
" except (ValueError, TypeError):",
|
| 366 |
-
" pass",
|
| 367 |
-
" ",
|
| 368 |
-
" # Convert string dates to datetime",
|
| 369 |
-
" try:",
|
| 370 |
-
" df[col] = pd.to_datetime(df[col])",
|
| 371 |
-
" continue",
|
| 372 |
-
" except (ValueError, TypeError):",
|
| 373 |
-
" pass",
|
| 374 |
-
" ",
|
| 375 |
-
" # Clean remaining None/NaN values",
|
| 376 |
-
" df[col] = df[col].where(pd.notnull(df[col]), None)",
|
| 377 |
-
]
|
| 378 |
-
|
| 379 |
-
# Apply filters if specified (with enhanced safety)
|
| 380 |
-
if request.filters:
|
| 381 |
-
filter_conditions = []
|
| 382 |
-
for column, condition in request.filters.items():
|
| 383 |
-
if isinstance(condition, dict):
|
| 384 |
-
if 'min' in condition and 'max' in condition:
|
| 385 |
-
filter_conditions.append(
|
| 386 |
-
f"(pd.notna(df['{column}']) & "
|
| 387 |
-
f"(df['{column}'] >= {condition['min']}) & "
|
| 388 |
-
f"(df['{column}'] <= {condition['max']})"
|
| 389 |
-
)
|
| 390 |
-
elif 'values' in condition:
|
| 391 |
-
values = ', '.join([f"'{v}'" if isinstance(v, str) else str(v) for v in condition['values']])
|
| 392 |
-
filter_conditions.append(
|
| 393 |
-
f"(pd.notna(df['{column}'])) & "
|
| 394 |
-
f"(df['{column}'].isin([{values}]))"
|
| 395 |
-
)
|
| 396 |
-
else:
|
| 397 |
-
filter_conditions.append(
|
| 398 |
-
f"(pd.notna(df['{column}'])) & "
|
| 399 |
-
f"(df['{column}'] == {repr(condition)})"
|
| 400 |
-
)
|
| 401 |
-
|
| 402 |
-
if filter_conditions:
|
| 403 |
-
code_lines.extend([
|
| 404 |
-
"",
|
| 405 |
-
"# Apply filters with NaN checking",
|
| 406 |
-
f"df = df[{' & '.join(filter_conditions)}].copy()"
|
| 407 |
-
])
|
| 408 |
-
|
| 409 |
-
code_lines.extend([
|
| 410 |
-
"",
|
| 411 |
-
"# Visualization setup",
|
| 412 |
-
f"plt.style.use('{valid_style}')",
|
| 413 |
-
f"plt.figure(figsize=(10, 6))"
|
| 414 |
-
])
|
| 415 |
-
|
| 416 |
-
# Chart type specific code (unchanged from your original)
|
| 417 |
-
if request.chart_type == "line":
|
| 418 |
-
if request.hue_column:
|
| 419 |
-
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 420 |
-
else:
|
| 421 |
-
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
|
| 422 |
-
elif request.chart_type == "bar":
|
| 423 |
-
if request.hue_column:
|
| 424 |
-
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 425 |
-
else:
|
| 426 |
-
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
|
| 427 |
-
elif request.chart_type == "scatter":
|
| 428 |
-
if request.hue_column:
|
| 429 |
-
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 430 |
-
else:
|
| 431 |
-
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
|
| 432 |
-
elif request.chart_type == "histogram":
|
| 433 |
-
code_lines.append(f"plt.hist(df['{request.x_column}'].dropna(), bins=20)") # Added dropna()
|
| 434 |
-
elif request.chart_type == "boxplot":
|
| 435 |
-
if request.hue_column:
|
| 436 |
-
code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')") # Added dropna()
|
| 437 |
-
else:
|
| 438 |
-
code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}')") # Added dropna()
|
| 439 |
-
elif request.chart_type == "heatmap":
|
| 440 |
-
code_lines.append("numeric_df = df.select_dtypes(include=[np.number])") # Filter numeric only
|
| 441 |
-
code_lines.append("corr = numeric_df.corr()")
|
| 442 |
-
code_lines.append("sns.heatmap(corr, annot=True, cmap='coolwarm')")
|
| 443 |
-
else:
|
| 444 |
-
raise ValueError(f"Unsupported chart type: {request.chart_type}")
|
| 445 |
-
|
| 446 |
-
# Add labels and title
|
| 447 |
-
if request.title:
|
| 448 |
-
code_lines.append(f"plt.title('{request.title}')")
|
| 449 |
-
if request.x_label:
|
| 450 |
-
code_lines.append(f"plt.xlabel('{request.x_label}')")
|
| 451 |
-
if request.y_label:
|
| 452 |
-
code_lines.append(f"plt.ylabel('{request.y_label}')")
|
| 453 |
-
|
| 454 |
-
code_lines.extend([
|
| 455 |
-
"plt.tight_layout()",
|
| 456 |
-
"plt.show()"
|
| 457 |
-
])
|
| 458 |
-
|
| 459 |
-
return "\n".join(code_lines)
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
# Determine chart type
|
| 463 |
-
chart_type = "bar"
|
| 464 |
-
if "line" in prompt:
|
| 465 |
-
chart_type = "line"
|
| 466 |
-
elif "scatter" in prompt:
|
| 467 |
-
chart_type = "scatter"
|
| 468 |
-
elif "histogram" in prompt:
|
| 469 |
-
chart_type = "histogram"
|
| 470 |
-
elif "box" in prompt:
|
| 471 |
-
chart_type = "boxplot"
|
| 472 |
-
elif "heatmap" in prompt or "correlation" in prompt:
|
| 473 |
-
chart_type = "heatmap"
|
| 474 |
-
|
| 475 |
-
# Try to detect columns
|
| 476 |
-
x_col = None
|
| 477 |
-
y_col = None
|
| 478 |
-
hue_col = None
|
| 479 |
-
|
| 480 |
-
for col in df_columns:
|
| 481 |
-
if col.lower() in prompt:
|
| 482 |
-
if not x_col:
|
| 483 |
-
x_col = col
|
| 484 |
-
elif not y_col:
|
| 485 |
-
y_col = col
|
| 486 |
-
else:
|
| 487 |
-
hue_col = col
|
| 488 |
-
|
| 489 |
-
# Default to first columns if not detected
|
| 490 |
-
if not x_col and len(df_columns) > 0:
|
| 491 |
-
x_col = df_columns[0]
|
| 492 |
-
if not y_col and len(df_columns) > 1:
|
| 493 |
-
y_col = df_columns[1]
|
| 494 |
-
|
| 495 |
-
return VisualizationRequest(
|
| 496 |
-
chart_type=chart_type,
|
| 497 |
-
x_column=x_col,
|
| 498 |
-
y_column=y_col,
|
| 499 |
-
hue_column=hue_col,
|
| 500 |
-
title="Generated from: " + prompt[:50] + ("..." if len(prompt) > 50 else ""),
|
| 501 |
-
style="seaborn-v0_8" # Updated default
|
| 502 |
-
)
|
| 503 |
-
from typing import Optional
|
| 504 |
|
| 505 |
-
def interpret_natural_language(prompt: str, df_columns: list) -> Optional[VisualizationRequest]:
|
| 506 |
-
"""Fully dynamic prompt interpretation that works with any Excel columns"""
|
| 507 |
-
if not prompt or not df_columns:
|
| 508 |
-
return None
|
| 509 |
|
| 510 |
-
prompt = prompt.lower().strip()
|
| 511 |
-
col_names = [col.lower() for col in df_columns]
|
| 512 |
-
|
| 513 |
-
# Initialize with defaults
|
| 514 |
-
chart_type = "bar"
|
| 515 |
-
x_col = None
|
| 516 |
-
y_col = None
|
| 517 |
-
hue_col = None
|
| 518 |
-
|
| 519 |
-
# Dynamic chart type detection
|
| 520 |
-
if any(word in prompt for word in ["line", "trend", "over time"]):
|
| 521 |
-
chart_type = "line"
|
| 522 |
-
elif any(word in prompt for word in ["scatter", "relationship", "correlat"]):
|
| 523 |
-
chart_type = "scatter"
|
| 524 |
-
elif any(word in prompt for word in ["histogram", "distribut", "frequenc"]):
|
| 525 |
-
chart_type = "histogram"
|
| 526 |
-
elif any(word in prompt for word in ["box", "quartile"]):
|
| 527 |
-
chart_type = "boxplot"
|
| 528 |
-
elif any(word in prompt for word in ["heatmap", "matrix"]):
|
| 529 |
-
chart_type = "heatmap"
|
| 530 |
-
|
| 531 |
-
# Dynamic column assignment - looks for column names mentioned in prompt
|
| 532 |
-
for col, col_lower in zip(df_columns, col_names):
|
| 533 |
-
if col_lower in prompt:
|
| 534 |
-
# First mentioned column becomes x-axis
|
| 535 |
-
if not x_col:
|
| 536 |
-
x_col = col
|
| 537 |
-
# Second mentioned becomes y-axis (except for histograms)
|
| 538 |
-
elif not y_col and chart_type != "histogram":
|
| 539 |
-
y_col = col
|
| 540 |
-
# Third mentioned could be hue
|
| 541 |
-
elif not hue_col and chart_type in ["bar", "scatter", "line"]:
|
| 542 |
-
hue_col = col
|
| 543 |
-
|
| 544 |
-
# Smart defaults when columns aren't specified
|
| 545 |
-
if not x_col and df_columns:
|
| 546 |
-
x_col = df_columns[0] # First column as default x-axis
|
| 547 |
-
|
| 548 |
-
if not y_col and len(df_columns) > 1 and chart_type != "histogram":
|
| 549 |
-
y_col = df_columns[1] # Second column as default y-axis
|
| 550 |
-
|
| 551 |
-
# Special handling for specific chart types
|
| 552 |
-
if chart_type == "heatmap":
|
| 553 |
-
return VisualizationRequest(
|
| 554 |
-
chart_type="heatmap",
|
| 555 |
-
title=f"Heatmap: {prompt[:30]}...",
|
| 556 |
-
style="seaborn-v0_8"
|
| 557 |
-
)
|
| 558 |
|
| 559 |
-
if chart_type == "histogram" and y_col:
|
| 560 |
-
# Histograms only need x-axis
|
| 561 |
-
y_col = None
|
| 562 |
-
|
| 563 |
-
return VisualizationRequest(
|
| 564 |
-
chart_type=chart_type,
|
| 565 |
-
x_column=x_col,
|
| 566 |
-
y_column=y_col,
|
| 567 |
-
hue_column=hue_col,
|
| 568 |
-
title=f"{chart_type.title()} of {prompt[:30]}...",
|
| 569 |
-
style="seaborn-v0_8"
|
| 570 |
-
)
|
| 571 |
|
| 572 |
-
# ===== DYNAMIC VISUALIZATION FUNCTIONS =====
|
| 573 |
-
def read_any_excel(content: bytes) -> pd.DataFrame:
|
| 574 |
-
"""Read any Excel file with automatic type detection"""
|
| 575 |
-
try:
|
| 576 |
-
# First read without parsing dates to detect datetime columns
|
| 577 |
-
df = pd.read_excel(
|
| 578 |
-
io.BytesIO(content),
|
| 579 |
-
engine='openpyxl',
|
| 580 |
-
dtype=object, # Read everything as object initially
|
| 581 |
-
na_values=['', '#N/A', '#VALUE!', '#REF!', 'NULL', 'NA', 'N/A']
|
| 582 |
-
)
|
| 583 |
-
|
| 584 |
-
# Convert each column to best possible type
|
| 585 |
-
for col in df.columns:
|
| 586 |
-
# First try numeric conversion
|
| 587 |
-
try:
|
| 588 |
-
df[col] = pd.to_numeric(df[col])
|
| 589 |
-
continue
|
| 590 |
-
except (ValueError, TypeError):
|
| 591 |
-
pass
|
| 592 |
-
|
| 593 |
-
# Then try datetime with explicit format
|
| 594 |
-
try:
|
| 595 |
-
df[col] = pd.to_datetime(df[col], format='mixed')
|
| 596 |
-
continue
|
| 597 |
-
except (ValueError, TypeError):
|
| 598 |
-
pass
|
| 599 |
-
|
| 600 |
-
# Finally clean strings
|
| 601 |
-
df[col] = df[col].astype(str).str.strip()
|
| 602 |
-
df[col] = df[col].replace(['nan', 'None', 'NaT', ''], None)
|
| 603 |
-
|
| 604 |
-
return df
|
| 605 |
-
|
| 606 |
-
except Exception as e:
|
| 607 |
-
logger.error(f"Excel reading failed: {str(e)}")
|
| 608 |
-
raise HTTPException(422, f"Could not process Excel file: {str(e)}")
|
| 609 |
|
| 610 |
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
except Exception as e:
|
| 614 |
-
logger.error(f"Excel reading failed: {str(e)}")
|
| 615 |
-
raise HTTPException(422, f"Could not process Excel file: {str(e)}")
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
def clean_and_convert_data(df: pd.DataFrame) -> pd.DataFrame:
|
| 619 |
-
"""
|
| 620 |
-
Clean and convert data types in a DataFrame with proper error handling
|
| 621 |
-
"""
|
| 622 |
-
df_clean = df.copy()
|
| 623 |
-
|
| 624 |
-
for col in df_clean.columns:
|
| 625 |
-
# Try numeric conversion with proper error handling
|
| 626 |
-
try:
|
| 627 |
-
numeric_vals = pd.to_numeric(df_clean[col])
|
| 628 |
-
df_clean[col] = numeric_vals
|
| 629 |
-
continue # Skip to next column if successful
|
| 630 |
-
except (ValueError, TypeError):
|
| 631 |
-
pass
|
| 632 |
-
|
| 633 |
-
# Try datetime conversion with format inference
|
| 634 |
-
try:
|
| 635 |
-
# First try ISO format
|
| 636 |
-
datetime_vals = pd.to_datetime(df_clean[col], format='ISO8601')
|
| 637 |
-
df_clean[col] = datetime_vals
|
| 638 |
-
continue
|
| 639 |
-
except (ValueError, TypeError):
|
| 640 |
-
try:
|
| 641 |
-
# Fallback to mixed format
|
| 642 |
-
datetime_vals = pd.to_datetime(df_clean[col], format='mixed')
|
| 643 |
-
df_clean[col] = datetime_vals
|
| 644 |
-
continue
|
| 645 |
-
except (ValueError, TypeError):
|
| 646 |
-
pass
|
| 647 |
-
|
| 648 |
-
# Clean string columns
|
| 649 |
-
if df_clean[col].dtype == object:
|
| 650 |
-
df_clean[col] = (
|
| 651 |
-
df_clean[col]
|
| 652 |
-
.astype(str)
|
| 653 |
-
.str.strip()
|
| 654 |
-
.replace(['nan', 'None', 'NaT', ''], pd.NA)
|
| 655 |
-
)
|
| 656 |
-
|
| 657 |
-
return df_clean
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
def is_date_like(s: str) -> bool:
|
| 662 |
-
"""Helper to detect date-like strings"""
|
| 663 |
-
date_patterns = [
|
| 664 |
-
r'\d{4}-\d{2}-\d{2}', # YYYY-MM-DD
|
| 665 |
-
r'\d{2}/\d{2}/\d{4}', # MM/DD/YYYY
|
| 666 |
-
r'\d{4}/\d{2}/\d{2}', # YYYY/MM/DD
|
| 667 |
-
r'\d{2}-\d{2}-\d{4}', # MM-DD-YYYY
|
| 668 |
-
r'\d{1,2}[./-]\d{1,2}[./-]\d{2,4}', # Various separators
|
| 669 |
-
r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}' # With time
|
| 670 |
-
]
|
| 671 |
-
return any(re.match(p, s) for p in date_patterns)
|
| 672 |
-
|
| 673 |
-
def generate_smart_prompt(df: pd.DataFrame) -> str:
|
| 674 |
-
"""Generate a sensible default prompt based on data"""
|
| 675 |
-
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
| 676 |
-
date_cols = df.select_dtypes(include=['datetime']).columns.tolist()
|
| 677 |
-
cat_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
| 678 |
-
|
| 679 |
-
if date_cols and numeric_cols:
|
| 680 |
-
return f"Show line chart of {numeric_cols[0]} over time"
|
| 681 |
-
elif len(numeric_cols) >= 2 and cat_cols:
|
| 682 |
-
return f"Compare {numeric_cols[0]} and {numeric_cols[1]} by {cat_cols[0]}"
|
| 683 |
-
elif numeric_cols:
|
| 684 |
-
return f"Show distribution of {numeric_cols[0]}"
|
| 685 |
-
else:
|
| 686 |
-
return "Show data overview"
|
| 687 |
-
|
| 688 |
-
def generate_dynamic_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
|
| 689 |
-
"""Generate visualization code that adapts to any DataFrame structure"""
|
| 690 |
-
# Validate style
|
| 691 |
-
valid_style = validate_matplotlib_style(request.style)
|
| 692 |
-
|
| 693 |
-
# Prepare data with type preservation
|
| 694 |
-
data_dict = {}
|
| 695 |
-
type_hints = {}
|
| 696 |
-
|
| 697 |
-
for col in df.columns:
|
| 698 |
-
if pd.api.types.is_datetime64_any_dtype(df[col]):
|
| 699 |
-
data_dict[col] = df[col].dt.strftime('%Y-%m-%d %H:%M:%S').tolist()
|
| 700 |
-
type_hints[col] = 'datetime'
|
| 701 |
-
elif pd.api.types.is_numeric_dtype(df[col]):
|
| 702 |
-
data_dict[col] = df[col].tolist()
|
| 703 |
-
type_hints[col] = 'numeric'
|
| 704 |
-
else:
|
| 705 |
-
data_dict[col] = df[col].astype(str).tolist()
|
| 706 |
-
type_hints[col] = 'string'
|
| 707 |
-
|
| 708 |
-
code_lines = [
|
| 709 |
-
"import matplotlib.pyplot as plt",
|
| 710 |
-
"import seaborn as sns",
|
| 711 |
-
"import pandas as pd",
|
| 712 |
-
"import numpy as np",
|
| 713 |
-
"from datetime import datetime",
|
| 714 |
-
"",
|
| 715 |
-
"# Data reconstruction with type handling",
|
| 716 |
-
f"raw_data = {data_dict}",
|
| 717 |
-
"df = pd.DataFrame(raw_data)",
|
| 718 |
-
"",
|
| 719 |
-
"# Type conversion based on detected types"
|
| 720 |
-
]
|
| 721 |
-
|
| 722 |
-
# Add type conversion for each column
|
| 723 |
-
for col, col_type in type_hints.items():
|
| 724 |
-
if col_type == 'datetime':
|
| 725 |
-
code_lines.append(
|
| 726 |
-
f"df['{col}'] = pd.to_datetime(df['{col}'], format='%Y-%m-%d %H:%M:%S', errors='ignore')"
|
| 727 |
-
)
|
| 728 |
-
elif col_type == 'numeric':
|
| 729 |
-
code_lines.append(
|
| 730 |
-
f"df['{col}'] = pd.to_numeric(df['{col}'], errors='ignore')"
|
| 731 |
-
)
|
| 732 |
-
|
| 733 |
-
code_lines.extend([
|
| 734 |
-
"",
|
| 735 |
-
"# Clean missing values",
|
| 736 |
-
"df = df.replace([None, np.nan, 'nan', 'None', 'NaT', ''], None)",
|
| 737 |
-
"df = df.where(pd.notnull(df), None)",
|
| 738 |
-
"",
|
| 739 |
-
"# Visualization setup",
|
| 740 |
-
f"plt.style.use('{valid_style}')",
|
| 741 |
-
f"plt.figure(figsize=(10, 6))"
|
| 742 |
-
])
|
| 743 |
-
|
| 744 |
-
# Chart type specific code (from your existing function)
|
| 745 |
-
if request.chart_type == "line":
|
| 746 |
-
if request.hue_column:
|
| 747 |
-
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 748 |
-
else:
|
| 749 |
-
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
|
| 750 |
-
elif request.chart_type == "bar":
|
| 751 |
-
if request.hue_column:
|
| 752 |
-
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 753 |
-
else:
|
| 754 |
-
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
|
| 755 |
-
elif request.chart_type == "scatter":
|
| 756 |
-
if request.hue_column:
|
| 757 |
-
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 758 |
-
else:
|
| 759 |
-
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
|
| 760 |
-
elif request.chart_type == "histogram":
|
| 761 |
-
code_lines.append(f"plt.hist(df['{request.x_column}'].dropna(), bins=20)")
|
| 762 |
-
elif request.chart_type == "boxplot":
|
| 763 |
-
if request.hue_column:
|
| 764 |
-
code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 765 |
-
else:
|
| 766 |
-
code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}')")
|
| 767 |
-
elif request.chart_type == "heatmap":
|
| 768 |
-
code_lines.append("numeric_df = df.select_dtypes(include=[np.number])")
|
| 769 |
-
code_lines.append("corr = numeric_df.corr()")
|
| 770 |
-
code_lines.append("sns.heatmap(corr, annot=True, cmap='coolwarm')")
|
| 771 |
-
else:
|
| 772 |
-
raise ValueError(f"Unsupported chart type: {request.chart_type}")
|
| 773 |
-
|
| 774 |
-
# Add labels and title
|
| 775 |
-
if request.title:
|
| 776 |
-
code_lines.append(f"plt.title('{request.title}')")
|
| 777 |
-
if request.x_label:
|
| 778 |
-
code_lines.append(f"plt.xlabel('{request.x_label}')")
|
| 779 |
-
if request.y_label:
|
| 780 |
-
code_lines.append(f"plt.ylabel('{request.y_label}')")
|
| 781 |
-
|
| 782 |
-
code_lines.extend([
|
| 783 |
-
"plt.tight_layout()",
|
| 784 |
-
"plt.show()"
|
| 785 |
-
])
|
| 786 |
-
|
| 787 |
-
return "\n".join(code_lines)
|
| 788 |
-
|
| 789 |
|
| 790 |
|
| 791 |
|
|
@@ -990,191 +509,7 @@ def validate_french_response(text: str) -> str:
|
|
| 990 |
|
| 991 |
|
| 992 |
|
| 993 |
-
|
| 994 |
-
@app.post("/visualize/natural")
|
| 995 |
-
async def natural_language_visualization(
|
| 996 |
-
file: UploadFile = File(...),
|
| 997 |
-
prompt: str = Form(""),
|
| 998 |
-
style: str = Form("seaborn-v0_8")
|
| 999 |
-
):
|
| 1000 |
-
try:
|
| 1001 |
-
# Read and validate file
|
| 1002 |
-
content = await file.read()
|
| 1003 |
-
try:
|
| 1004 |
-
df = pd.read_excel(BytesIO(content))
|
| 1005 |
-
except Exception as e:
|
| 1006 |
-
raise HTTPException(400, detail=f"Invalid Excel file: {str(e)}")
|
| 1007 |
-
|
| 1008 |
-
if df.empty:
|
| 1009 |
-
raise HTTPException(400, detail="The uploaded Excel file is empty")
|
| 1010 |
-
|
| 1011 |
-
# Clean and convert data types
|
| 1012 |
-
for col in df.columns:
|
| 1013 |
-
# Try numeric conversion first
|
| 1014 |
-
df[col] = pd.to_numeric(df[col], errors='ignore')
|
| 1015 |
-
|
| 1016 |
-
# Then try datetime
|
| 1017 |
-
try:
|
| 1018 |
-
df[col] = pd.to_datetime(df[col], errors='ignore')
|
| 1019 |
-
except:
|
| 1020 |
-
pass
|
| 1021 |
-
|
| 1022 |
-
# Finally clean strings
|
| 1023 |
-
df[col] = df[col].astype(str).str.strip().replace('nan', np.nan)
|
| 1024 |
-
|
| 1025 |
-
# Generate visualization request
|
| 1026 |
-
vis_request = interpret_natural_language(prompt, df.columns.tolist())
|
| 1027 |
-
if not vis_request:
|
| 1028 |
-
raise HTTPException(400, "Could not interpret visualization request")
|
| 1029 |
-
|
| 1030 |
-
# Create visualization
|
| 1031 |
-
plt.style.use(style)
|
| 1032 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 1033 |
-
|
| 1034 |
-
try:
|
| 1035 |
-
if vis_request.chart_type == "heatmap":
|
| 1036 |
-
numeric_df = df.select_dtypes(include=['number'])
|
| 1037 |
-
if numeric_df.empty:
|
| 1038 |
-
raise ValueError("No numeric columns for heatmap")
|
| 1039 |
-
sns.heatmap(numeric_df.corr(), annot=True, ax=ax)
|
| 1040 |
-
else:
|
| 1041 |
-
# Ensure numeric data for plotting
|
| 1042 |
-
plot_data = df.copy()
|
| 1043 |
-
if vis_request.x_column:
|
| 1044 |
-
plot_data[vis_request.x_column] = pd.to_numeric(
|
| 1045 |
-
plot_data[vis_request.x_column],
|
| 1046 |
-
errors='coerce'
|
| 1047 |
-
)
|
| 1048 |
-
if vis_request.y_column:
|
| 1049 |
-
plot_data[vis_request.y_column] = pd.to_numeric(
|
| 1050 |
-
plot_data[vis_request.y_column],
|
| 1051 |
-
errors='coerce'
|
| 1052 |
-
)
|
| 1053 |
-
|
| 1054 |
-
# Remove rows with missing numeric data
|
| 1055 |
-
plot_data = plot_data.dropna()
|
| 1056 |
-
|
| 1057 |
-
if vis_request.chart_type == "line":
|
| 1058 |
-
sns.lineplot(
|
| 1059 |
-
data=plot_data,
|
| 1060 |
-
x=vis_request.x_column,
|
| 1061 |
-
y=vis_request.y_column,
|
| 1062 |
-
hue=vis_request.hue_column,
|
| 1063 |
-
ax=ax
|
| 1064 |
-
)
|
| 1065 |
-
elif vis_request.chart_type == "bar":
|
| 1066 |
-
sns.barplot(
|
| 1067 |
-
data=plot_data,
|
| 1068 |
-
x=vis_request.x_column,
|
| 1069 |
-
y=vis_request.y_column,
|
| 1070 |
-
hue=vis_request.hue_column,
|
| 1071 |
-
ax=ax
|
| 1072 |
-
)
|
| 1073 |
-
elif vis_request.chart_type == "scatter":
|
| 1074 |
-
sns.scatterplot(
|
| 1075 |
-
data=plot_data,
|
| 1076 |
-
x=vis_request.x_column,
|
| 1077 |
-
y=vis_request.y_column,
|
| 1078 |
-
hue=vis_request.hue_column,
|
| 1079 |
-
ax=ax
|
| 1080 |
-
)
|
| 1081 |
-
# Add other chart types as needed...
|
| 1082 |
-
|
| 1083 |
-
ax.set_title(vis_request.title)
|
| 1084 |
-
buf = BytesIO()
|
| 1085 |
-
plt.savefig(buf, format='png', bbox_inches='tight')
|
| 1086 |
-
plt.close(fig)
|
| 1087 |
-
buf.seek(0)
|
| 1088 |
-
|
| 1089 |
-
return {
|
| 1090 |
-
"status": "success",
|
| 1091 |
-
"image": base64.b64encode(buf.read()).decode('utf-8'),
|
| 1092 |
-
"chart_type": vis_request.chart_type,
|
| 1093 |
-
"columns": list(df.columns),
|
| 1094 |
-
"x_column": vis_request.x_column,
|
| 1095 |
-
"y_column": vis_request.y_column,
|
| 1096 |
-
"hue_column": vis_request.hue_column
|
| 1097 |
-
}
|
| 1098 |
-
|
| 1099 |
-
except Exception as e:
|
| 1100 |
-
raise HTTPException(400, detail=f"Plotting error: {str(e)}")
|
| 1101 |
-
|
| 1102 |
-
except HTTPException:
|
| 1103 |
-
raise
|
| 1104 |
-
except Exception as e:
|
| 1105 |
-
logger.error(f"Visualization error: {str(e)}", exc_info=True)
|
| 1106 |
-
raise HTTPException(500, detail=f"Server error: {str(e)}")
|
| 1107 |
-
|
| 1108 |
-
|
| 1109 |
-
@app.get("/visualize/styles")
|
| 1110 |
-
@limiter.limit("10/minute")
|
| 1111 |
-
async def list_available_styles(request: Request):
|
| 1112 |
-
"""List all available matplotlib styles"""
|
| 1113 |
-
return {"available_styles": plt.style.available}
|
| 1114 |
-
|
| 1115 |
-
@app.post("/get_columns")
|
| 1116 |
-
@limiter.limit("10/minute")
|
| 1117 |
-
async def get_excel_columns(
|
| 1118 |
-
request: Request,
|
| 1119 |
-
file: UploadFile = File(...)
|
| 1120 |
-
):
|
| 1121 |
-
try:
|
| 1122 |
-
file_ext, content = await process_uploaded_file(file)
|
| 1123 |
-
if file_ext not in {"xlsx", "xls"}:
|
| 1124 |
-
raise HTTPException(400, "Only Excel files are supported")
|
| 1125 |
-
|
| 1126 |
-
df = pd.read_excel(io.BytesIO(content))
|
| 1127 |
-
return {
|
| 1128 |
-
"columns": list(df.columns),
|
| 1129 |
-
"sample_data": df.head().to_dict(orient='records'),
|
| 1130 |
-
"statistics": df.describe().to_dict() if len(df.select_dtypes(include=['number']).columns) > 0 else None
|
| 1131 |
-
}
|
| 1132 |
-
except Exception as e:
|
| 1133 |
-
logger.error(f"Column extraction failed: {str(e)}")
|
| 1134 |
-
raise HTTPException(500, detail="Failed to extract columns from Excel file")
|
| 1135 |
-
|
| 1136 |
-
@app.exception_handler(RateLimitExceeded)
|
| 1137 |
-
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
|
| 1138 |
-
return JSONResponse(
|
| 1139 |
-
status_code=429,
|
| 1140 |
-
content={"detail": "Too many requests. Please try again later."}
|
| 1141 |
-
)
|
| 1142 |
-
import gradio as gr
|
| 1143 |
-
|
| 1144 |
-
# Gradio interface for visualization
|
| 1145 |
-
def gradio_visualize(file, prompt, style="seaborn-v0_8"):
|
| 1146 |
-
# Call your existing FastAPI endpoint
|
| 1147 |
-
with open(file.name, "rb") as f:
|
| 1148 |
-
response = client.post(
|
| 1149 |
-
"/visualize/natural",
|
| 1150 |
-
files={"file": f},
|
| 1151 |
-
data={"prompt": prompt, "style": style}
|
| 1152 |
-
)
|
| 1153 |
-
result = response.json()
|
| 1154 |
-
|
| 1155 |
-
# Return both image and code
|
| 1156 |
-
return (
|
| 1157 |
-
result["image"], # Base64 image
|
| 1158 |
-
f"```python\n{result['code']}\n```" # Code with Markdown formatting
|
| 1159 |
-
)
|
| 1160 |
-
|
| 1161 |
-
# Create Gradio interface
|
| 1162 |
-
visualization_interface = gr.Interface(
|
| 1163 |
-
fn=gradio_visualize,
|
| 1164 |
-
inputs=[
|
| 1165 |
-
gr.File(label="Upload Excel File", type="filepath"),
|
| 1166 |
-
gr.Textbox(label="Visualization Prompt", placeholder="e.g., 'Show sales by region'"),
|
| 1167 |
-
gr.Dropdown(label="Style", choices=plt.style.available, value="seaborn-v0_8")
|
| 1168 |
-
],
|
| 1169 |
-
outputs=gr.Image(label="Generated Visualization"),
|
| 1170 |
-
title="📊 Data Visualizer",
|
| 1171 |
-
description="Upload an Excel file and describe the visualization you want"
|
| 1172 |
-
)
|
| 1173 |
-
|
| 1174 |
-
|
| 1175 |
-
# Mount Gradio to your FastAPI app
|
| 1176 |
-
app = gr.mount_gradio_app(app, visualization_interface, path="/gradio")
|
| 1177 |
-
|
| 1178 |
|
| 1179 |
|
| 1180 |
# ===== ADD THIS AT THE BOTTOM OF main.py =====
|
|
|
|
| 296 |
|
| 297 |
|
| 298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
|
| 301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
|
| 310 |
|
|
|
|
| 509 |
|
| 510 |
|
| 511 |
|
| 512 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
|
| 514 |
|
| 515 |
# ===== ADD THIS AT THE BOTTOM OF main.py =====
|