AI_Avatar_Chat / OMNIAVATAR_INTEGRATION_SUMMARY.md
bravedims
🎭 Add complete OmniAvatar-14B integration for avatar video generation
e7ffb7d
ο»Ώ# OmniAvatar-14B Integration Summary
## 🎯 What's Been Implemented
### Core Integration Files
- **omniavatar_engine.py**: Complete OmniAvatar-14B engine with audio-driven avatar generation
- **setup_omniavatar.py**: Cross-platform Python setup script for model downloads
- **setup_omniavatar.ps1**: Windows PowerShell setup script with interactive installation
- **OMNIAVATAR_README.md**: Comprehensive documentation and usage guide
### Configuration & Scripts
- **configs/inference.yaml**: OmniAvatar inference configuration with optimal settings
- **scripts/inference.py**: Enhanced inference script with proper error handling
- **examples/infer_samples.txt**: Sample input formats for avatar generation
### Updated Dependencies
- **requirements.txt**: Updated with OmniAvatar-compatible PyTorch versions and dependencies
- Added xformers, flash-attn, and other performance optimization libraries
## πŸš€ Key Features Implemented
### 1. Audio-Driven Avatar Generation
- Full integration with OmniAvatar-14B model architecture
- Support for adaptive body animation based on audio content
- Lip-sync accuracy with adjustable audio scaling
- 480p video output with 25fps frame rate
### 2. Multi-Modal Input Support
- Text prompts for character behavior control
- Audio file input (WAV, MP3, M4A, OGG)
- Optional reference image support for character consistency
- Text-to-speech integration for voice generation
### 3. Performance Optimization
- Hardware-specific configuration recommendations
- TeaCache acceleration for faster inference
- Multi-GPU support with sequence parallelism
- Memory-efficient FSDP mode for large models
### 4. Easy Setup & Installation
- Automated model downloading (~30GB total)
- Dependency management and version compatibility
- Cross-platform support (Windows/Linux/macOS)
- Interactive setup with progress monitoring
## πŸ“Š Model Architecture
Based on the official OmniAvatar-14B specification:
### Required Models (Total: ~30.36GB)
1. **Wan2.1-T2V-14B** (~28GB) - Base text-to-video generation model
2. **OmniAvatar-14B** (~2GB) - LoRA adaptation weights for avatar animation
3. **wav2vec2-base-960h** (~360MB) - Audio feature extraction
### Capabilities
- **Input**: Text prompts + Audio + Optional reference image
- **Output**: 480p MP4 videos with synchronized lip movement
- **Duration**: Up to 30 seconds per generation
- **Quality**: Professional-grade avatar animation with adaptive body movements
## 🎨 Usage Modes
### 1. Gradio Web Interface
- User-friendly web interface at `http://localhost:7860/gradio`
- Real-time parameter adjustment
- Voice profile selection for TTS
- Example templates and tutorials
### 2. REST API
- FastAPI endpoints for programmatic access
- JSON request/response format
- Batch processing capabilities
- Health monitoring and status endpoints
### 3. Direct Python Integration
```python
from omniavatar_engine import omni_engine
video_path, time_taken = omni_engine.generate_video(
prompt="A friendly teacher explaining AI concepts",
audio_path="path/to/audio.wav",
guidance_scale=5.0,
audio_scale=3.5
)
```
## πŸ“ˆ Performance Specifications
Based on OmniAvatar documentation and hardware optimization:
| Hardware | Speed | VRAM Required | Configuration |
|----------|-------|---------------|---------------|
| Single GPU (32GB+) | ~16s/iteration | 36GB | Full quality |
| Single GPU (16-32GB) | ~19s/iteration | 21GB | Balanced |
| Single GPU (8-16GB) | ~22s/iteration | 8GB | Memory efficient |
| 4x GPU Setup | ~4.8s/iteration | 14.3GB/GPU | Multi-GPU parallel |
## πŸ”§ Technical Implementation
### Integration Architecture
```
app.py (FastAPI + Gradio)
↓
omniavatar_engine.py (Core Logic)
↓
OmniAvatar-14B Models
β”œβ”€β”€ Wan2.1-T2V-14B (Base T2V)
β”œβ”€β”€ OmniAvatar-14B (Avatar LoRA)
└── wav2vec2-base-960h (Audio)
```
### Advanced Features
- **Adaptive Prompting**: Intelligent prompt engineering for better results
- **Audio Preprocessing**: Automatic audio quality enhancement
- **Memory Management**: Dynamic VRAM optimization based on available hardware
- **Error Recovery**: Graceful fallbacks and error handling
- **Batch Processing**: Efficient multi-sample generation
## 🎯 Next Steps
### To Enable Full Functionality:
1. **Download Models**: Run `python setup_omniavatar.py` or `.\setup_omniavatar.ps1`
2. **Install Dependencies**: `pip install -r requirements.txt`
3. **Start Application**: `python app.py`
4. **Test Generation**: Use the Gradio interface or API endpoints
### For Production Deployment:
- Configure appropriate hardware (GPU with 8GB+ VRAM recommended)
- Set up model caching and optimization
- Implement proper monitoring and logging
- Scale with multiple GPU instances if needed
This implementation provides a complete, production-ready integration of OmniAvatar-14B for audio-driven avatar video generation with adaptive body animation! πŸŽ‰