Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoTokenizer
|
| 3 |
-
from typing import List,
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
# CPU-модели
|
| 7 |
MODELS = {
|
| 8 |
-
"
|
| 9 |
-
"Qwen2.5-1.5B": "Qwen/Qwen2.5-1.5B-Instruct",
|
| 10 |
-
"Phi-3-mini": "microsoft/Phi-3-mini-4k-instruct"
|
| 11 |
}
|
| 12 |
|
| 13 |
def load_model(model_key: str):
|
|
@@ -21,12 +19,15 @@ def load_model(model_key: str):
|
|
| 21 |
"text-generation",
|
| 22 |
model=model_id,
|
| 23 |
tokenizer=tokenizer,
|
| 24 |
-
torch_dtype=torch.
|
| 25 |
-
device_map=
|
| 26 |
-
max_new_tokens=
|
| 27 |
do_sample=True,
|
| 28 |
temperature=0.7,
|
| 29 |
-
pad_token_id=tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
| 30 |
)
|
| 31 |
print(f"✅ {model_id} загружена!")
|
| 32 |
return pipe
|
|
@@ -34,9 +35,9 @@ def load_model(model_key: str):
|
|
| 34 |
model_cache = {}
|
| 35 |
|
| 36 |
def respond(message: str,
|
| 37 |
-
history: List[
|
| 38 |
model_key: str,
|
| 39 |
-
system_prompt: str) -> Tuple[List[
|
| 40 |
try:
|
| 41 |
if model_key not in model_cache:
|
| 42 |
model_cache[model_key] = load_model(model_key)
|
|
@@ -48,9 +49,8 @@ def respond(message: str,
|
|
| 48 |
if system_prompt.strip():
|
| 49 |
messages.append({"role": "system", "content": system_prompt})
|
| 50 |
|
| 51 |
-
for
|
| 52 |
-
messages.append({"role": "
|
| 53 |
-
messages.append({"role": "assistant", "content": bot_reply})
|
| 54 |
|
| 55 |
messages.append({"role": "user", "content": message})
|
| 56 |
|
|
@@ -62,20 +62,20 @@ def respond(message: str,
|
|
| 62 |
|
| 63 |
print(f"✅ Ответ: {bot_reply[:50]}...")
|
| 64 |
|
| 65 |
-
new_history = history + [
|
| 66 |
return new_history, "", gr.update(value="")
|
| 67 |
|
| 68 |
except Exception as e:
|
| 69 |
error_msg = f"❌ {model_key}: {str(e)}"
|
| 70 |
print(f"💥 {error_msg}")
|
| 71 |
-
new_history = history + [
|
| 72 |
return new_history, error_msg, gr.update(value="")
|
| 73 |
|
| 74 |
with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)") as demo:
|
| 75 |
gr.Markdown("# Локальный Inference (без API!)\n**Маленькие модели** — 1-3 сек CPU. Большие думают ооочень долго. Нет limits/token. В качестве примера.")
|
| 76 |
|
| 77 |
with gr.Row():
|
| 78 |
-
model_dropdown = gr.Dropdown(choices=list(MODELS.keys()), value="
|
| 79 |
system_prompt = gr.Textbox(label="📝 System", placeholder="Ты весёлый ИИ.", lines=2)
|
| 80 |
|
| 81 |
chatbot = gr.Chatbot(height=500, label="Чат") # ← без type
|
|
@@ -97,9 +97,14 @@ with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)
|
|
| 97 |
return [], "", gr.update(value="")
|
| 98 |
clear_btn.click(clear, outputs=[chatbot, status, msg_input])
|
| 99 |
|
| 100 |
-
def retry(history: List[
|
| 101 |
if history:
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
return ""
|
| 104 |
retry_btn.click(retry, inputs=[chatbot], outputs=[msg_input])
|
| 105 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoTokenizer
|
| 3 |
+
from typing import List, Dict, Any, Tuple
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# CPU-модели (только одна маленькая модель для экономии памяти)
|
| 7 |
MODELS = {
|
| 8 |
+
"gpt2": "gpt2", # Используем только GPT-2 для экономии памяти
|
|
|
|
|
|
|
| 9 |
}
|
| 10 |
|
| 11 |
def load_model(model_key: str):
|
|
|
|
| 19 |
"text-generation",
|
| 20 |
model=model_id,
|
| 21 |
tokenizer=tokenizer,
|
| 22 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
| 23 |
+
device_map=None, # Explicitly set to CPU
|
| 24 |
+
max_new_tokens=128, # Ещё меньше токенов для экономии памяти
|
| 25 |
do_sample=True,
|
| 26 |
temperature=0.7,
|
| 27 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 28 |
+
# Memory optimization parameters
|
| 29 |
+
low_cpu_mem_usage=True,
|
| 30 |
+
trust_remote_code=True
|
| 31 |
)
|
| 32 |
print(f"✅ {model_id} загружена!")
|
| 33 |
return pipe
|
|
|
|
| 35 |
model_cache = {}
|
| 36 |
|
| 37 |
def respond(message: str,
|
| 38 |
+
history: List[Dict[str, str]],
|
| 39 |
model_key: str,
|
| 40 |
+
system_prompt: str) -> Tuple[List[Dict[str, str]], str, Dict[str, Any]]:
|
| 41 |
try:
|
| 42 |
if model_key not in model_cache:
|
| 43 |
model_cache[model_key] = load_model(model_key)
|
|
|
|
| 49 |
if system_prompt.strip():
|
| 50 |
messages.append({"role": "system", "content": system_prompt})
|
| 51 |
|
| 52 |
+
for msg in history:
|
| 53 |
+
messages.append({"role": msg["role"], "content": msg["content"]})
|
|
|
|
| 54 |
|
| 55 |
messages.append({"role": "user", "content": message})
|
| 56 |
|
|
|
|
| 62 |
|
| 63 |
print(f"✅ Ответ: {bot_reply[:50]}...")
|
| 64 |
|
| 65 |
+
new_history = history + [{"role": "user", "content": message}, {"role": "assistant", "content": bot_reply}]
|
| 66 |
return new_history, "", gr.update(value="")
|
| 67 |
|
| 68 |
except Exception as e:
|
| 69 |
error_msg = f"❌ {model_key}: {str(e)}"
|
| 70 |
print(f"💥 {error_msg}")
|
| 71 |
+
new_history = history + [{"role": "user", "content": message}, {"role": "assistant", "content": error_msg}]
|
| 72 |
return new_history, error_msg, gr.update(value="")
|
| 73 |
|
| 74 |
with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)") as demo:
|
| 75 |
gr.Markdown("# Локальный Inference (без API!)\n**Маленькие модели** — 1-3 сек CPU. Большие думают ооочень долго. Нет limits/token. В качестве примера.")
|
| 76 |
|
| 77 |
with gr.Row():
|
| 78 |
+
model_dropdown = gr.Dropdown(choices=list(MODELS.keys()), value="gpt2", label="🧠 Модель")
|
| 79 |
system_prompt = gr.Textbox(label="📝 System", placeholder="Ты весёлый ИИ.", lines=2)
|
| 80 |
|
| 81 |
chatbot = gr.Chatbot(height=500, label="Чат") # ← без type
|
|
|
|
| 97 |
return [], "", gr.update(value="")
|
| 98 |
clear_btn.click(clear, outputs=[chatbot, status, msg_input])
|
| 99 |
|
| 100 |
+
def retry(history: List[Dict[str, str]]):
|
| 101 |
if history:
|
| 102 |
+
last_user_msg = None
|
| 103 |
+
for msg in reversed(history):
|
| 104 |
+
if msg["role"] == "user":
|
| 105 |
+
last_user_msg = msg["content"]
|
| 106 |
+
break
|
| 107 |
+
return last_user_msg if last_user_msg else ""
|
| 108 |
return ""
|
| 109 |
retry_btn.click(retry, inputs=[chatbot], outputs=[msg_input])
|
| 110 |
|