Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoTokenizer
|
| 3 |
-
from typing import List, Dict, Any
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
# CPU-модели
|
| 7 |
MODELS = {
|
| 8 |
"Qwen2.5-0.5B": "Qwen/Qwen2.5-0.5B-Instruct",
|
| 9 |
"Qwen2.5-1.5B": "Qwen/Qwen2.5-1.5B-Instruct",
|
|
@@ -11,7 +11,6 @@ MODELS = {
|
|
| 11 |
}
|
| 12 |
|
| 13 |
def load_model(model_key: str):
|
| 14 |
-
"""Lazy load pipeline."""
|
| 15 |
model_id = MODELS[model_key]
|
| 16 |
print(f"🚀 Загрузка {model_id}...")
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
@@ -32,14 +31,12 @@ def load_model(model_key: str):
|
|
| 32 |
print(f"✅ {model_id} загружена!")
|
| 33 |
return pipe
|
| 34 |
|
| 35 |
-
# Global cache
|
| 36 |
model_cache = {}
|
| 37 |
|
| 38 |
def respond(message: str,
|
| 39 |
-
history: List[
|
| 40 |
model_key: str,
|
| 41 |
-
system_prompt: str) -> Tuple[List[
|
| 42 |
-
"""Локальный чат с pipeline."""
|
| 43 |
try:
|
| 44 |
if model_key not in model_cache:
|
| 45 |
model_cache[model_key] = load_model(model_key)
|
|
@@ -47,39 +44,33 @@ def respond(message: str,
|
|
| 47 |
|
| 48 |
print(f"🚀 Генерация: {model_key}, Msg='{message[:30]}...'")
|
| 49 |
|
| 50 |
-
# Chat format (system + history + user)
|
| 51 |
messages = []
|
| 52 |
if system_prompt.strip():
|
| 53 |
messages.append({"role": "system", "content": system_prompt})
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
messages.append({"role": "user", "content": message})
|
| 56 |
|
| 57 |
-
# Apply chat template (для instruct)
|
| 58 |
tokenizer = pipe.tokenizer
|
| 59 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 60 |
|
| 61 |
-
# Generate
|
| 62 |
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, temperature=0.7)
|
| 63 |
bot_reply = outputs[0]["generated_text"][len(prompt):].strip()
|
| 64 |
|
| 65 |
print(f"✅ Ответ: {bot_reply[:50]}...")
|
| 66 |
|
| 67 |
-
new_history = history + [
|
| 68 |
-
{"role": "user", "content": message},
|
| 69 |
-
{"role": "assistant", "content": bot_reply}
|
| 70 |
-
]
|
| 71 |
return new_history, "", gr.update(value="")
|
| 72 |
|
| 73 |
except Exception as e:
|
| 74 |
error_msg = f"❌ {model_key}: {str(e)}"
|
| 75 |
print(f"💥 {error_msg}")
|
| 76 |
-
new_history = history + [
|
| 77 |
-
{"role": "user", "content": message},
|
| 78 |
-
{"role": "assistant", "content": error_msg}
|
| 79 |
-
]
|
| 80 |
return new_history, error_msg, gr.update(value="")
|
| 81 |
|
| 82 |
-
# UI — ИСПРАВЛЕНО: убраны theme и type, несовместимые с Gradio 5
|
| 83 |
with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)") as demo:
|
| 84 |
gr.Markdown("# Локальный Inference (без API!)\n**Маленькие модели** — 1-3 сек CPU. Большие думают ооочень долго. Нет limits/token. В качестве примера.")
|
| 85 |
|
|
@@ -87,8 +78,7 @@ with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)
|
|
| 87 |
model_dropdown = gr.Dropdown(choices=list(MODELS.keys()), value="Qwen2.5-0.5B", label="🧠 Модель")
|
| 88 |
system_prompt = gr.Textbox(label="📝 System", placeholder="Ты весёлый ИИ.", lines=2)
|
| 89 |
|
| 90 |
-
|
| 91 |
-
chatbot = gr.Chatbot(height=500, label="Чат")
|
| 92 |
|
| 93 |
with gr.Row():
|
| 94 |
msg_input = gr.Textbox(placeholder="Привет! (Enter)", show_label=False, lines=1)
|
|
@@ -100,7 +90,6 @@ with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)
|
|
| 100 |
|
| 101 |
status = gr.Textbox(label="Логи", interactive=False, lines=4)
|
| 102 |
|
| 103 |
-
# Events
|
| 104 |
send_btn.click(fn=respond, inputs=[msg_input, chatbot, model_dropdown, system_prompt], outputs=[chatbot, status, msg_input])
|
| 105 |
msg_input.submit(fn=respond, inputs=[msg_input, chatbot, model_dropdown, system_prompt], outputs=[chatbot, status, msg_input])
|
| 106 |
|
|
@@ -108,11 +97,11 @@ with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)
|
|
| 108 |
return [], "", gr.update(value="")
|
| 109 |
clear_btn.click(clear, outputs=[chatbot, status, msg_input])
|
| 110 |
|
| 111 |
-
def retry(history: List[
|
| 112 |
-
if
|
| 113 |
-
return history[-
|
| 114 |
return ""
|
| 115 |
retry_btn.click(retry, inputs=[chatbot], outputs=[msg_input])
|
| 116 |
|
| 117 |
if __name__ == "__main__":
|
| 118 |
-
demo.queue(max_size=10).launch(debug=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoTokenizer
|
| 3 |
+
from typing import List, Tuple, Dict, Any
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# CPU-модели
|
| 7 |
MODELS = {
|
| 8 |
"Qwen2.5-0.5B": "Qwen/Qwen2.5-0.5B-Instruct",
|
| 9 |
"Qwen2.5-1.5B": "Qwen/Qwen2.5-1.5B-Instruct",
|
|
|
|
| 11 |
}
|
| 12 |
|
| 13 |
def load_model(model_key: str):
|
|
|
|
| 14 |
model_id = MODELS[model_key]
|
| 15 |
print(f"🚀 Загрузка {model_id}...")
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
| 31 |
print(f"✅ {model_id} загружена!")
|
| 32 |
return pipe
|
| 33 |
|
|
|
|
| 34 |
model_cache = {}
|
| 35 |
|
| 36 |
def respond(message: str,
|
| 37 |
+
history: List[Tuple[str, str]],
|
| 38 |
model_key: str,
|
| 39 |
+
system_prompt: str) -> Tuple[List[Tuple[str, str]], str, Dict[str, Any]]:
|
|
|
|
| 40 |
try:
|
| 41 |
if model_key not in model_cache:
|
| 42 |
model_cache[model_key] = load_model(model_key)
|
|
|
|
| 44 |
|
| 45 |
print(f"🚀 Генерация: {model_key}, Msg='{message[:30]}...'")
|
| 46 |
|
|
|
|
| 47 |
messages = []
|
| 48 |
if system_prompt.strip():
|
| 49 |
messages.append({"role": "system", "content": system_prompt})
|
| 50 |
+
|
| 51 |
+
for user_msg, bot_reply in history:
|
| 52 |
+
messages.append({"role": "user", "content": user_msg})
|
| 53 |
+
messages.append({"role": "assistant", "content": bot_reply})
|
| 54 |
+
|
| 55 |
messages.append({"role": "user", "content": message})
|
| 56 |
|
|
|
|
| 57 |
tokenizer = pipe.tokenizer
|
| 58 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 59 |
|
|
|
|
| 60 |
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, temperature=0.7)
|
| 61 |
bot_reply = outputs[0]["generated_text"][len(prompt):].strip()
|
| 62 |
|
| 63 |
print(f"✅ Ответ: {bot_reply[:50]}...")
|
| 64 |
|
| 65 |
+
new_history = history + [(message, bot_reply)]
|
|
|
|
|
|
|
|
|
|
| 66 |
return new_history, "", gr.update(value="")
|
| 67 |
|
| 68 |
except Exception as e:
|
| 69 |
error_msg = f"❌ {model_key}: {str(e)}"
|
| 70 |
print(f"💥 {error_msg}")
|
| 71 |
+
new_history = history + [(message, error_msg)]
|
|
|
|
|
|
|
|
|
|
| 72 |
return new_history, error_msg, gr.update(value="")
|
| 73 |
|
|
|
|
| 74 |
with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)") as demo:
|
| 75 |
gr.Markdown("# Локальный Inference (без API!)\n**Маленькие модели** — 1-3 сек CPU. Большие думают ооочень долго. Нет limits/token. В качестве примера.")
|
| 76 |
|
|
|
|
| 78 |
model_dropdown = gr.Dropdown(choices=list(MODELS.keys()), value="Qwen2.5-0.5B", label="🧠 Модель")
|
| 79 |
system_prompt = gr.Textbox(label="📝 System", placeholder="Ты весёлый ИИ.", lines=2)
|
| 80 |
|
| 81 |
+
chatbot = gr.Chatbot(height=500, label="Чат") # ← без type
|
|
|
|
| 82 |
|
| 83 |
with gr.Row():
|
| 84 |
msg_input = gr.Textbox(placeholder="Привет! (Enter)", show_label=False, lines=1)
|
|
|
|
| 90 |
|
| 91 |
status = gr.Textbox(label="Логи", interactive=False, lines=4)
|
| 92 |
|
|
|
|
| 93 |
send_btn.click(fn=respond, inputs=[msg_input, chatbot, model_dropdown, system_prompt], outputs=[chatbot, status, msg_input])
|
| 94 |
msg_input.submit(fn=respond, inputs=[msg_input, chatbot, model_dropdown, system_prompt], outputs=[chatbot, status, msg_input])
|
| 95 |
|
|
|
|
| 97 |
return [], "", gr.update(value="")
|
| 98 |
clear_btn.click(clear, outputs=[chatbot, status, msg_input])
|
| 99 |
|
| 100 |
+
def retry(history: List[Tuple[str, str]]):
|
| 101 |
+
if history:
|
| 102 |
+
return history[-1][0]
|
| 103 |
return ""
|
| 104 |
retry_btn.click(retry, inputs=[chatbot], outputs=[msg_input])
|
| 105 |
|
| 106 |
if __name__ == "__main__":
|
| 107 |
+
demo.queue(max_size=10).launch(debug=True, ssr_mode=False)
|