Spaces:
Running
Running
File size: 13,833 Bytes
f32f063 f32d4c7 f32f063 f32d4c7 f32f063 61a3b2f f32f063 f32d4c7 532fc72 f32d4c7 f32f063 3567a04 f32f063 f32d4c7 f32f063 f32d4c7 59baef6 7b9de45 d57f9ad 59baef6 7b9de45 532fc72 7b9de45 59baef6 7b9de45 59baef6 7b9de45 532fc72 59baef6 d57f9ad 532fc72 d57f9ad 59baef6 f32f063 f32d4c7 f32f063 0c3f890 d57f9ad 0c3f890 d57f9ad 0c3f890 d57f9ad 0c3f890 f32f063 f32d4c7 7b9de45 f32d4c7 7b9de45 532fc72 7b9de45 532fc72 d57f9ad 7b9de45 f32f063 6f9d03f f32d4c7 f32f063 fcbfd45 f32f063 f32d4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
"""
Arabic Tokenizer Arena Pro - Main Application
==============================================
Advanced research & production platform for Arabic tokenization analysis
Run with: python app.py
"""
import gradio as gr
# Import modules
from config import SAMPLE_TEXTS, LEADERBOARD_DATASETS
from styles import CUSTOM_CSS
from tokenizer_manager import tokenizer_manager
from analysis import analyze_single_tokenizer, compare_tokenizers
from leaderboard import run_leaderboard_evaluation, evaluate_submitted_tokenizer, get_cached_leaderboard
from ui_components import generate_about_html
def create_interface():
"""Create the Gradio interface"""
available_tokenizers = tokenizer_manager.get_tokenizer_choices()
tokenizers_by_type = tokenizer_manager.get_tokenizers_by_type()
with gr.Blocks(
css=CUSTOM_CSS,
title="Arabic Tokenizer Arena Pro",
theme=gr.themes.Base(
primary_hue="green",
secondary_hue="blue",
neutral_hue="slate",
font=["IBM Plex Sans Arabic", "system-ui", "sans-serif"]
)
) as demo:
# Header
gr.HTML("""
<div class="header-section">
<h1>๐๏ธ Arabic Tokenizer Arena Pro</h1>
<p>Advanced research & production platform for Arabic tokenization analysis</p>
</div>
""")
with gr.Tabs():
# ===== TAB 1: Single Tokenizer Analysis =====
with gr.TabItem("๐ฌ Single Analysis", id="single"):
with gr.Row():
with gr.Column(scale=1):
tokenizer_dropdown = gr.Dropdown(
choices=available_tokenizers,
value=available_tokenizers[0] if available_tokenizers else None,
label="Select Tokenizer",
info="Choose a tokenizer to analyze"
)
sample_dropdown = gr.Dropdown(
choices=list(SAMPLE_TEXTS.keys()),
label="Sample Texts",
info="Select a sample or enter custom text"
)
input_text = gr.Textbox(
lines=4,
placeholder="ุงูุชุจ ุงููุต ุงูุนุฑุจู ููุง...\nEnter Arabic text here...",
label="Input Text",
rtl=True
)
analyze_btn = gr.Button("๐ Analyze", variant="primary", size="lg")
with gr.Column(scale=2):
info_output = gr.HTML(label="Tokenizer Information")
metrics_output = gr.HTML(label="Evaluation Metrics")
tokens_output = gr.HTML(label="Token Visualization")
decoded_output = gr.HTML(label="Decoded Output")
sample_dropdown.change(
lambda x: SAMPLE_TEXTS.get(x, ""),
inputs=[sample_dropdown],
outputs=[input_text]
)
analyze_btn.click(
analyze_single_tokenizer,
inputs=[tokenizer_dropdown, input_text],
outputs=[info_output, metrics_output, tokens_output, decoded_output]
)
# ===== TAB 2: Comparison Mode =====
with gr.TabItem("โ๏ธ Compare Tokenizers", id="compare"):
with gr.Row():
with gr.Column(scale=1):
compare_tokenizers_select = gr.CheckboxGroup(
choices=available_tokenizers,
value=available_tokenizers[:5] if len(available_tokenizers) >= 5 else available_tokenizers,
label="Select Tokenizers to Compare",
info="Choose 2 or more tokenizers"
)
compare_sample = gr.Dropdown(
choices=list(SAMPLE_TEXTS.keys()),
label="Sample Texts"
)
compare_text = gr.Textbox(
lines=4,
placeholder="ุงูุชุจ ุงููุต ุงูุนุฑุจู ููุง...",
label="Input Text",
rtl=True
)
compare_btn = gr.Button("โ๏ธ Compare", variant="primary", size="lg")
with gr.Column(scale=2):
comparison_output = gr.HTML(label="Comparison Results")
compare_sample.change(
lambda x: SAMPLE_TEXTS.get(x, ""),
inputs=[compare_sample],
outputs=[compare_text]
)
compare_btn.click(
compare_tokenizers,
inputs=[compare_tokenizers_select, compare_text],
outputs=[comparison_output]
)
# ===== TAB 3: LEADERBOARD =====
with gr.TabItem("๐ Leaderboard", id="leaderboard"):
gr.Markdown("""
## ๐ Arabic Tokenizer Leaderboard
All tokenizers evaluated on **all 8 Arabic datasets** from HuggingFace (~36,000+ samples total).
""")
with gr.Row():
status_output = gr.Markdown("โณ Loading cached results...")
re_evaluate_btn = gr.Button("๐ Re-evaluate All", variant="secondary", size="sm")
gr.Markdown("### ๐ Leaderboard Results")
leaderboard_output = gr.HTML()
gr.Markdown("### ๐ Per-Dataset Breakdown")
per_dataset_output = gr.HTML()
re_evaluate_btn.click(
fn=run_leaderboard_evaluation,
inputs=[],
outputs=[leaderboard_output, per_dataset_output, status_output]
)
gr.Markdown("""
---
### ๐ Evaluation Datasets
| Dataset | Category | Samples |
|---------|----------|---------|
| ArabicMMLU | MSA Benchmark | 5,000 |
| ASTD | Egyptian Dialect | 5,000 |
| ATHAR | Classical Arabic | 5,000 |
| ARCD | QA Dataset | 1,395 |
| Ashaar | Poetry | 5,000 |
| Hadith | Religious | 5,000 |
| Arabic Sentiment | Social Media | 5,000 |
| SANAD | News | 5,000 |
""")
# ===== TAB 4: Metrics Reference =====
with gr.TabItem("๐ Metrics Guide", id="guide"):
gr.Markdown("""
## Tokenization Evaluation Metrics Guide
### Efficiency Metrics
| Metric | Description | Ideal Value | Why It Matters |
|--------|-------------|-------------|----------------|
| **Fertility** | Tokens per word | 1.0 | Lower fertility = fewer tokens = faster inference & lower cost |
| **Compression Ratio** | Bytes per token | Higher is better | Better compression = more efficient encoding |
| **Chars/Token** | Characters per token | Higher is better | More characters per token = better vocabulary utilization |
### Coverage Metrics
| Metric | Description | Ideal Value | Why It Matters |
|--------|-------------|-------------|----------------|
| **OOV Rate** | Out-of-vocabulary percentage | 0% | Lower OOV = better vocabulary coverage |
| **STRR** | Single Token Retention Rate | Higher is better | More words preserved as single tokens = better semantic boundaries |
| **Continued Words Ratio** | Words split into multiple tokens | Lower is better | Fewer splits = better word boundary preservation |
### Arabic-Specific Metrics
| Metric | Description | Why It Matters |
|--------|-------------|----------------|
| **Arabic Fertility** | Tokens per Arabic word | Arabic-specific efficiency measure |
| **Diacritic Preservation** | Whether tashkeel is preserved | Important for religious & educational texts |
### Scoring Formula (Leaderboard)
```
Score = (Fertility Score ร 0.45) + (Compression Score ร 0.35) + (UNK Score ร 0.20) ร 100
```
Where:
- **Fertility Score** = 2.0 / fertility (capped 0-1, inverted - lower fertility = higher score)
- **Compression Score** = compression / 6 (capped 0-1)
- **UNK Score** = 1 - (unk_ratio ร 20) (capped 0-1, inverted)
### Research Background
These metrics are based on recent research including:
- *"A Comprehensive Analysis of Various Tokenizers for Arabic LLMs"* (2024)
- *"Evaluating Various Tokenizers for Arabic Text Classification"* (Alyafeai et al.)
- *"Beyond Fertility: STRR as a Metric for Multilingual Tokenization"* (2025)
- *"Arabic Stable LM: Adapting Stable LM to Arabic"* (2024)
""")
# ===== TAB 5: Submit Tokenizer =====
with gr.TabItem("๐ Submit", id="submit"):
gr.Markdown("""
## ๐ Submit Your Tokenizer
Evaluate any HuggingFace tokenizer on **all 8 Arabic datasets** and see how it compares.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model Information")
submit_model_id = gr.Textbox(
label="HuggingFace Model ID *",
placeholder="e.g., google/gemma-2-9b",
info="The model ID from HuggingFace Hub"
)
submit_model_name = gr.Textbox(
label="Display Name (optional)",
placeholder="e.g., My Custom Tokenizer",
info="Leave empty to use model name"
)
submit_organization = gr.Textbox(
label="Organization (optional)",
placeholder="e.g., My Organization",
info="Leave empty to auto-detect"
)
submit_model_type = gr.Dropdown(
choices=[
"Arabic LLM",
"Arabic BERT",
"Arabic Tokenizer",
"Multilingual LLM",
"Custom"
],
value="Custom",
label="Model Type"
)
submit_btn = gr.Button("๐ Evaluate Tokenizer", variant="primary", size="lg")
submit_status = gr.Markdown("")
with gr.Column(scale=2):
gr.Markdown("### Evaluation Results")
submit_results = gr.HTML()
submit_btn.click(
fn=evaluate_submitted_tokenizer,
inputs=[submit_model_id, submit_model_name, submit_organization, submit_model_type],
outputs=[submit_results, submit_status]
)
gr.Markdown("""
---
### ๐ Submission Guidelines
- **Model ID**: Must be a valid HuggingFace model ID (e.g., `organization/model-name`)
- **Tokenizer**: The model must have a tokenizer that can be loaded with `AutoTokenizer`
- **Public Models**: Only public models on HuggingFace Hub are supported
- **Evaluation**: Your tokenizer will be evaluated on all 8 Arabic datasets (~36,000+ samples)
### ๐ก Tips
- Lower fertility scores indicate better Arabic tokenization efficiency
- Compare your results with the leaderboard to see how your tokenizer ranks
""")
# ===== TAB 6: About =====
with gr.TabItem("โน๏ธ About", id="about"):
about_html = generate_about_html(
tokenizers_by_type,
len(available_tokenizers)
)
gr.HTML(about_html)
# Load cached leaderboard results on page load (fast)
demo.load(
fn=get_cached_leaderboard,
inputs=[],
outputs=[leaderboard_output, per_dataset_output, status_output]
)
return demo
# ============================================================================
# MAIN
# ============================================================================
if __name__ == "__main__":
demo = create_interface()
demo.launch()
|