Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,10 +4,13 @@ Arabic Tokenizer Arena Pro - Advanced Arabic Tokenization Analysis Platform
|
|
| 4 |
A comprehensive research and production-grade tool for evaluating Arabic tokenizers
|
| 5 |
across multiple dimensions: efficiency, coverage, morphological awareness, and more.
|
| 6 |
|
|
|
|
|
|
|
| 7 |
Supports:
|
| 8 |
- Arabic-specific tokenizers (Aranizer, AraBERT, CAMeLBERT, MARBERT, etc.)
|
| 9 |
- Major LLM tokenizers (Jais, AceGPT, Falcon-Arabic, ALLaM, Qwen, Llama, Mistral, GPT)
|
| 10 |
- Comprehensive evaluation metrics based on latest research
|
|
|
|
| 11 |
"""
|
| 12 |
|
| 13 |
import gradio as gr
|
|
@@ -18,6 +21,8 @@ import unicodedata
|
|
| 18 |
from typing import Dict, List, Tuple, Optional, Any
|
| 19 |
from dataclasses import dataclass, field
|
| 20 |
from enum import Enum
|
|
|
|
|
|
|
| 21 |
import os
|
| 22 |
|
| 23 |
# Hugging Face authentication
|
|
@@ -30,6 +35,9 @@ if HF_TOKEN:
|
|
| 30 |
from transformers import AutoTokenizer, logging
|
| 31 |
logging.set_verbosity_error()
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
# ============================================================================
|
| 34 |
# DATA CLASSES AND ENUMS
|
| 35 |
# ============================================================================
|
|
@@ -204,30 +212,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 204 |
dialect_support=["MSA"],
|
| 205 |
special_features=["100K vocabulary", "MSA focused"]
|
| 206 |
),
|
| 207 |
-
"asafaya/bert-base-arabic": TokenizerInfo(
|
| 208 |
-
name="Arabic BERT (Safaya)",
|
| 209 |
-
model_id="asafaya/bert-base-arabic",
|
| 210 |
-
type=TokenizerType.ENCODER_ONLY,
|
| 211 |
-
algorithm=TokenizerAlgorithm.WORDPIECE,
|
| 212 |
-
vocab_size=32000,
|
| 213 |
-
description="Arabic BERT trained on MSA and dialectal Arabic",
|
| 214 |
-
organization="Safaya",
|
| 215 |
-
arabic_support="Native",
|
| 216 |
-
dialect_support=["MSA", "DA"],
|
| 217 |
-
special_features=["TPU trained", "Dialect support"]
|
| 218 |
-
),
|
| 219 |
-
"UBC-NLP/AraT5-base": TokenizerInfo(
|
| 220 |
-
name="AraT5 Base",
|
| 221 |
-
model_id="UBC-NLP/AraT5-base",
|
| 222 |
-
type=TokenizerType.ENCODER_ONLY,
|
| 223 |
-
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
|
| 224 |
-
vocab_size=110000,
|
| 225 |
-
description="Arabic text-to-text transformer for generation tasks",
|
| 226 |
-
organization="UBC NLP",
|
| 227 |
-
arabic_support="Native",
|
| 228 |
-
dialect_support=["MSA", "Tweet"],
|
| 229 |
-
special_features=["Text-to-Text", "Generation optimized"]
|
| 230 |
-
),
|
| 231 |
|
| 232 |
# ========== ARABIC-SPECIFIC TOKENIZERS ==========
|
| 233 |
"riotu-lab/Aranizer-PBE-86k": TokenizerInfo(
|
|
@@ -254,30 +238,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 254 |
dialect_support=["MSA"],
|
| 255 |
special_features=["Low fertility", "SentencePiece", "86K vocab"]
|
| 256 |
),
|
| 257 |
-
"riotu-lab/Aranizer-PBE-32k": TokenizerInfo(
|
| 258 |
-
name="Aranizer PBE 32K",
|
| 259 |
-
model_id="riotu-lab/Aranizer-PBE-32k",
|
| 260 |
-
type=TokenizerType.ARABIC_SPECIFIC,
|
| 261 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 262 |
-
vocab_size=32000,
|
| 263 |
-
description="Compact PBE tokenizer for Arabic",
|
| 264 |
-
organization="RIOTU Lab",
|
| 265 |
-
arabic_support="Native",
|
| 266 |
-
dialect_support=["MSA"],
|
| 267 |
-
special_features=["Compact", "LLM compatible"]
|
| 268 |
-
),
|
| 269 |
-
"riotu-lab/Aranizer-SP-32k": TokenizerInfo(
|
| 270 |
-
name="Aranizer SP 32K",
|
| 271 |
-
model_id="riotu-lab/Aranizer-SP-32k",
|
| 272 |
-
type=TokenizerType.ARABIC_SPECIFIC,
|
| 273 |
-
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
|
| 274 |
-
vocab_size=32000,
|
| 275 |
-
description="Compact SentencePiece tokenizer for Arabic",
|
| 276 |
-
organization="RIOTU Lab",
|
| 277 |
-
arabic_support="Native",
|
| 278 |
-
dialect_support=["MSA"],
|
| 279 |
-
special_features=["Compact", "Efficient"]
|
| 280 |
-
),
|
| 281 |
|
| 282 |
# ========== ARABIC-SPECIFIC LLMs ==========
|
| 283 |
"ALLaM-AI/ALLaM-7B-Instruct-preview": TokenizerInfo(
|
|
@@ -328,18 +288,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 328 |
dialect_support=["MSA"],
|
| 329 |
special_features=["LLaMA-based", "Cultural alignment", "RLHF", "Chat"]
|
| 330 |
),
|
| 331 |
-
"FreedomIntelligence/AceGPT-7B-chat": TokenizerInfo(
|
| 332 |
-
name="AceGPT 7B Chat",
|
| 333 |
-
model_id="FreedomIntelligence/AceGPT-7B-chat",
|
| 334 |
-
type=TokenizerType.ARABIC_LLM,
|
| 335 |
-
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
|
| 336 |
-
vocab_size=32000,
|
| 337 |
-
description="Smaller Arabic-enhanced LLaMA variant with chat",
|
| 338 |
-
organization="Freedom Intelligence",
|
| 339 |
-
arabic_support="Adapted",
|
| 340 |
-
dialect_support=["MSA"],
|
| 341 |
-
special_features=["LLaMA-based", "Efficient", "Chat"]
|
| 342 |
-
),
|
| 343 |
"silma-ai/SILMA-9B-Instruct-v1.0": TokenizerInfo(
|
| 344 |
name="SILMA 9B Instruct",
|
| 345 |
model_id="silma-ai/SILMA-9B-Instruct-v1.0",
|
|
@@ -352,18 +300,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 352 |
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
|
| 353 |
special_features=["Gemma-based", "SOTA 9B class", "Efficient"]
|
| 354 |
),
|
| 355 |
-
"silma-ai/SILMA-Kashif-2B-Instruct-v1.0": TokenizerInfo(
|
| 356 |
-
name="SILMA Kashif 2B (RAG)",
|
| 357 |
-
model_id="silma-ai/SILMA-Kashif-2B-Instruct-v1.0",
|
| 358 |
-
type=TokenizerType.ARABIC_LLM,
|
| 359 |
-
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
|
| 360 |
-
vocab_size=256000,
|
| 361 |
-
description="RAG-optimized Arabic model, excellent for context-based QA",
|
| 362 |
-
organization="SILMA AI",
|
| 363 |
-
arabic_support="Native",
|
| 364 |
-
dialect_support=["MSA"],
|
| 365 |
-
special_features=["RAG optimized", "12K context", "Compact"]
|
| 366 |
-
),
|
| 367 |
"QCRI/Fanar-1-9B-Instruct": TokenizerInfo(
|
| 368 |
name="Fanar 9B Instruct",
|
| 369 |
model_id="QCRI/Fanar-1-9B-Instruct",
|
|
@@ -376,54 +312,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 376 |
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
|
| 377 |
special_features=["Islamic RAG", "Cultural alignment", "Gemma-based"]
|
| 378 |
),
|
| 379 |
-
"tiiuae/Falcon-Arabic-7B-Instruct": TokenizerInfo(
|
| 380 |
-
name="Falcon Arabic 7B Instruct",
|
| 381 |
-
model_id="tiiuae/Falcon-Arabic-7B-Instruct",
|
| 382 |
-
type=TokenizerType.ARABIC_LLM,
|
| 383 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 384 |
-
vocab_size=97024,
|
| 385 |
-
description="SOTA Arabic LLM from TII, outperforms models 4x its size",
|
| 386 |
-
organization="Technology Innovation Institute",
|
| 387 |
-
arabic_support="Native",
|
| 388 |
-
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine", "Maghrebi"],
|
| 389 |
-
special_features=["Falcon3-based", "32K context", "DPO aligned"]
|
| 390 |
-
),
|
| 391 |
-
"tiiuae/Falcon-Arabic-7B-Base": TokenizerInfo(
|
| 392 |
-
name="Falcon Arabic 7B Base",
|
| 393 |
-
model_id="tiiuae/Falcon-Arabic-7B-Base",
|
| 394 |
-
type=TokenizerType.ARABIC_LLM,
|
| 395 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 396 |
-
vocab_size=97024,
|
| 397 |
-
description="Base model of Falcon Arabic for fine-tuning",
|
| 398 |
-
organization="Technology Innovation Institute",
|
| 399 |
-
arabic_support="Native",
|
| 400 |
-
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
|
| 401 |
-
special_features=["Falcon3-based", "Fine-tuning ready"]
|
| 402 |
-
),
|
| 403 |
-
"CohereForAI/c4ai-command-r7b-arabic-02-2025": TokenizerInfo(
|
| 404 |
-
name="Cohere Command R7B Arabic",
|
| 405 |
-
model_id="CohereForAI/c4ai-command-r7b-arabic-02-2025",
|
| 406 |
-
type=TokenizerType.ARABIC_LLM,
|
| 407 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 408 |
-
vocab_size=256000,
|
| 409 |
-
description="Cohere's Arabic-optimized model for RAG and enterprise use",
|
| 410 |
-
organization="Cohere",
|
| 411 |
-
arabic_support="Native",
|
| 412 |
-
dialect_support=["MSA"],
|
| 413 |
-
special_features=["RAG optimized", "128K context", "Enterprise ready"]
|
| 414 |
-
),
|
| 415 |
-
"stabilityai/ar-stablelm-2-chat": TokenizerInfo(
|
| 416 |
-
name="Arabic StableLM 2 Chat",
|
| 417 |
-
model_id="stabilityai/ar-stablelm-2-chat",
|
| 418 |
-
type=TokenizerType.ARABIC_LLM,
|
| 419 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 420 |
-
vocab_size=100289,
|
| 421 |
-
description="Stability AI's Arabic instruction-tuned 1.6B model",
|
| 422 |
-
organization="Stability AI",
|
| 423 |
-
arabic_support="Native",
|
| 424 |
-
dialect_support=["MSA"],
|
| 425 |
-
special_features=["Compact 1.6B", "Chat optimized", "Efficient"]
|
| 426 |
-
),
|
| 427 |
"Navid-AI/Yehia-7B-preview": TokenizerInfo(
|
| 428 |
name="Yehia 7B Preview",
|
| 429 |
model_id="Navid-AI/Yehia-7B-preview",
|
|
@@ -450,30 +338,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 450 |
dialect_support=["Darija", "MSA"],
|
| 451 |
special_features=["Moroccan dialect", "Transliteration", "Cultural"]
|
| 452 |
),
|
| 453 |
-
"MBZUAI-Paris/Atlas-Chat-2B": TokenizerInfo(
|
| 454 |
-
name="Atlas-Chat 2B (Darija)",
|
| 455 |
-
model_id="MBZUAI-Paris/Atlas-Chat-2B",
|
| 456 |
-
type=TokenizerType.ARABIC_LLM,
|
| 457 |
-
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
|
| 458 |
-
vocab_size=256000,
|
| 459 |
-
description="Compact Moroccan Arabic model for edge deployment",
|
| 460 |
-
organization="MBZUAI Paris",
|
| 461 |
-
arabic_support="Native",
|
| 462 |
-
dialect_support=["Darija", "MSA"],
|
| 463 |
-
special_features=["Compact", "Moroccan dialect", "Edge-ready"]
|
| 464 |
-
),
|
| 465 |
-
"MBZUAI-Paris/Atlas-Chat-27B": TokenizerInfo(
|
| 466 |
-
name="Atlas-Chat 27B (Darija)",
|
| 467 |
-
model_id="MBZUAI-Paris/Atlas-Chat-27B",
|
| 468 |
-
type=TokenizerType.ARABIC_LLM,
|
| 469 |
-
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
|
| 470 |
-
vocab_size=256000,
|
| 471 |
-
description="Largest Moroccan Arabic model with best performance",
|
| 472 |
-
organization="MBZUAI Paris",
|
| 473 |
-
arabic_support="Native",
|
| 474 |
-
dialect_support=["Darija", "MSA"],
|
| 475 |
-
special_features=["27B params", "Moroccan dialect", "SOTA Darija"]
|
| 476 |
-
),
|
| 477 |
|
| 478 |
# ========== MULTILINGUAL LLMs WITH ARABIC SUPPORT ==========
|
| 479 |
"Qwen/Qwen2.5-7B": TokenizerInfo(
|
|
@@ -488,18 +352,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 488 |
dialect_support=["MSA"],
|
| 489 |
special_features=["152K vocab", "128K context", "30+ languages"]
|
| 490 |
),
|
| 491 |
-
"Qwen/Qwen2.5-14B-Instruct": TokenizerInfo(
|
| 492 |
-
name="Qwen 2.5 14B Instruct",
|
| 493 |
-
model_id="Qwen/Qwen2.5-14B-Instruct",
|
| 494 |
-
type=TokenizerType.MULTILINGUAL_LLM,
|
| 495 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 496 |
-
vocab_size=151936,
|
| 497 |
-
description="Larger Qwen with enhanced Arabic capabilities",
|
| 498 |
-
organization="Alibaba Qwen",
|
| 499 |
-
arabic_support="Supported",
|
| 500 |
-
dialect_support=["MSA"],
|
| 501 |
-
special_features=["14B params", "Strong Arabic", "Instruct tuned"]
|
| 502 |
-
),
|
| 503 |
"google/gemma-2-9b": TokenizerInfo(
|
| 504 |
name="Gemma 2 9B",
|
| 505 |
model_id="google/gemma-2-9b",
|
|
@@ -512,42 +364,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 512 |
dialect_support=["MSA"],
|
| 513 |
special_features=["256K vocab", "Efficient architecture"]
|
| 514 |
),
|
| 515 |
-
"google/gemma-2-9b-it": TokenizerInfo(
|
| 516 |
-
name="Gemma 2 9B Instruct",
|
| 517 |
-
model_id="google/gemma-2-9b-it",
|
| 518 |
-
type=TokenizerType.MULTILINGUAL_LLM,
|
| 519 |
-
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
|
| 520 |
-
vocab_size=256000,
|
| 521 |
-
description="Instruction-tuned Gemma with Arabic support",
|
| 522 |
-
organization="Google",
|
| 523 |
-
arabic_support="Supported",
|
| 524 |
-
dialect_support=["MSA"],
|
| 525 |
-
special_features=["Instruct tuned", "256K vocab"]
|
| 526 |
-
),
|
| 527 |
-
"CohereForAI/aya-expanse-8b": TokenizerInfo(
|
| 528 |
-
name="Aya Expanse 8B",
|
| 529 |
-
model_id="CohereForAI/aya-expanse-8b",
|
| 530 |
-
type=TokenizerType.MULTILINGUAL_LLM,
|
| 531 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 532 |
-
vocab_size=256000,
|
| 533 |
-
description="Cohere's multilingual model with strong Arabic support",
|
| 534 |
-
organization="Cohere",
|
| 535 |
-
arabic_support="Supported",
|
| 536 |
-
dialect_support=["MSA"],
|
| 537 |
-
special_features=["23 languages", "Arabic optimized"]
|
| 538 |
-
),
|
| 539 |
-
"CohereForAI/aya-expanse-32b": TokenizerInfo(
|
| 540 |
-
name="Aya Expanse 32B",
|
| 541 |
-
model_id="CohereForAI/aya-expanse-32b",
|
| 542 |
-
type=TokenizerType.MULTILINGUAL_LLM,
|
| 543 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 544 |
-
vocab_size=256000,
|
| 545 |
-
description="Large Aya model with enhanced multilingual capabilities",
|
| 546 |
-
organization="Cohere",
|
| 547 |
-
arabic_support="Supported",
|
| 548 |
-
dialect_support=["MSA"],
|
| 549 |
-
special_features=["32B params", "23 languages"]
|
| 550 |
-
),
|
| 551 |
"mistralai/Mistral-7B-v0.3": TokenizerInfo(
|
| 552 |
name="Mistral 7B v0.3",
|
| 553 |
model_id="mistralai/Mistral-7B-v0.3",
|
|
@@ -572,30 +388,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 572 |
dialect_support=["MSA"],
|
| 573 |
special_features=["Tekken tokenizer", "131K vocab", "Multilingual optimized"]
|
| 574 |
),
|
| 575 |
-
"microsoft/Phi-3.5-mini-instruct": TokenizerInfo(
|
| 576 |
-
name="Phi-3.5 Mini Instruct",
|
| 577 |
-
model_id="microsoft/Phi-3.5-mini-instruct",
|
| 578 |
-
type=TokenizerType.MULTILINGUAL_LLM,
|
| 579 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 580 |
-
vocab_size=32064,
|
| 581 |
-
description="Microsoft's compact multilingual model",
|
| 582 |
-
organization="Microsoft",
|
| 583 |
-
arabic_support="Limited",
|
| 584 |
-
dialect_support=["MSA"],
|
| 585 |
-
special_features=["Compact", "3.8B params"]
|
| 586 |
-
),
|
| 587 |
-
"google/mt5-base": TokenizerInfo(
|
| 588 |
-
name="mT5 Base",
|
| 589 |
-
model_id="google/mt5-base",
|
| 590 |
-
type=TokenizerType.MULTILINGUAL_LLM,
|
| 591 |
-
algorithm=TokenizerAlgorithm.SENTENCEPIECE,
|
| 592 |
-
vocab_size=250112,
|
| 593 |
-
description="Multilingual T5 covering 101 languages",
|
| 594 |
-
organization="Google",
|
| 595 |
-
arabic_support="Supported",
|
| 596 |
-
dialect_support=["MSA"],
|
| 597 |
-
special_features=["250K vocab", "101 languages", "Seq2Seq"]
|
| 598 |
-
),
|
| 599 |
"xlm-roberta-base": TokenizerInfo(
|
| 600 |
name="XLM-RoBERTa Base",
|
| 601 |
model_id="xlm-roberta-base",
|
|
@@ -620,8 +412,6 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 620 |
dialect_support=["MSA"],
|
| 621 |
special_features=["Baseline model", "104 languages"]
|
| 622 |
),
|
| 623 |
-
|
| 624 |
-
# ========== FALCON FAMILY ==========
|
| 625 |
"tiiuae/falcon-7b": TokenizerInfo(
|
| 626 |
name="Falcon 7B",
|
| 627 |
model_id="tiiuae/falcon-7b",
|
|
@@ -634,96 +424,109 @@ TOKENIZER_REGISTRY: Dict[str, TokenizerInfo] = {
|
|
| 634 |
dialect_support=["MSA"],
|
| 635 |
special_features=["65K vocab", "RefinedWeb trained"]
|
| 636 |
),
|
| 637 |
-
"tiiuae/falcon-7b-instruct": TokenizerInfo(
|
| 638 |
-
name="Falcon 7B Instruct",
|
| 639 |
-
model_id="tiiuae/falcon-7b-instruct",
|
| 640 |
-
type=TokenizerType.MULTILINGUAL_LLM,
|
| 641 |
-
algorithm=TokenizerAlgorithm.BPE,
|
| 642 |
-
vocab_size=65024,
|
| 643 |
-
description="Instruction-tuned Falcon 7B",
|
| 644 |
-
organization="Technology Innovation Institute",
|
| 645 |
-
arabic_support="Limited",
|
| 646 |
-
dialect_support=["MSA"],
|
| 647 |
-
special_features=["Instruct tuned", "Chat ready"]
|
| 648 |
-
),
|
| 649 |
}
|
| 650 |
|
| 651 |
-
#
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
|
| 728 |
# ============================================================================
|
| 729 |
# TOKENIZER LOADER AND CACHE
|
|
@@ -751,15 +554,6 @@ class TokenizerManager:
|
|
| 751 |
except Exception as e:
|
| 752 |
print(f" β {info.name}: {str(e)[:50]}")
|
| 753 |
|
| 754 |
-
# Try gated models
|
| 755 |
-
for model_id, info in GATED_MODELS:
|
| 756 |
-
try:
|
| 757 |
-
_ = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 758 |
-
self._available[model_id] = info
|
| 759 |
-
print(f" β {info.name} (gated)")
|
| 760 |
-
except Exception as e:
|
| 761 |
-
print(f" β {info.name} (gated): {str(e)[:50]}")
|
| 762 |
-
|
| 763 |
print(f"\nTotal available tokenizers: {len(self._available)}")
|
| 764 |
|
| 765 |
def get_tokenizer(self, model_id: str):
|
|
@@ -814,19 +608,8 @@ def has_diacritics(text: str) -> bool:
|
|
| 814 |
diacritics = set('ΩΩΩΩΩΩΩΩΩ°')
|
| 815 |
return any(c in diacritics for c in text)
|
| 816 |
|
| 817 |
-
def normalize_arabic(text: str) -> str:
|
| 818 |
-
"""Basic Arabic normalization"""
|
| 819 |
-
# Normalize alef variants
|
| 820 |
-
text = re.sub('[Ψ₯Ψ£Ψ’Ψ§]', 'Ψ§', text)
|
| 821 |
-
# Normalize yeh
|
| 822 |
-
text = re.sub('Ω', 'Ω', text)
|
| 823 |
-
# Normalize teh marbuta
|
| 824 |
-
text = re.sub('Ψ©', 'Ω', text)
|
| 825 |
-
return text
|
| 826 |
-
|
| 827 |
def get_arabic_words(text: str) -> List[str]:
|
| 828 |
"""Extract Arabic words from text"""
|
| 829 |
-
# Split on whitespace and filter for words containing Arabic
|
| 830 |
words = text.split()
|
| 831 |
return [w for w in words if any(is_arabic_char(c) for c in w)]
|
| 832 |
|
|
@@ -920,6 +703,439 @@ def analyze_tokenization(
|
|
| 920 |
decoded_text=decoded
|
| 921 |
)
|
| 922 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 923 |
# ============================================================================
|
| 924 |
# UI GENERATION FUNCTIONS
|
| 925 |
# ============================================================================
|
|
@@ -927,9 +1143,8 @@ def analyze_tokenization(
|
|
| 927 |
def generate_token_visualization(tokens: List[str], token_ids: List[int]) -> str:
|
| 928 |
"""Generate beautiful HTML visualization of tokens"""
|
| 929 |
|
| 930 |
-
# Color palette for tokens (alternating for clarity)
|
| 931 |
colors = [
|
| 932 |
-
('#1a1a2e', '#eaeaea'),
|
| 933 |
('#16213e', '#f0f0f0'),
|
| 934 |
('#0f3460', '#ffffff'),
|
| 935 |
('#533483', '#f5f5f5'),
|
|
@@ -942,10 +1157,7 @@ def generate_token_visualization(tokens: List[str], token_ids: List[int]) -> str
|
|
| 942 |
html_parts = []
|
| 943 |
for i, (token, tid) in enumerate(zip(tokens, token_ids)):
|
| 944 |
bg, fg = colors[i % len(colors)]
|
| 945 |
-
# Escape HTML entities
|
| 946 |
display_token = token.replace('<', '<').replace('>', '>')
|
| 947 |
-
|
| 948 |
-
# Determine if token is Arabic
|
| 949 |
is_arabic = any(is_arabic_char(c) for c in token)
|
| 950 |
direction = 'rtl' if is_arabic else 'ltr'
|
| 951 |
|
|
@@ -969,7 +1181,6 @@ def generate_token_visualization(tokens: List[str], token_ids: List[int]) -> str
|
|
| 969 |
def generate_metrics_card(metrics: TokenizationMetrics, info: TokenizerInfo) -> str:
|
| 970 |
"""Generate metrics visualization card"""
|
| 971 |
|
| 972 |
-
# Determine quality indicators
|
| 973 |
fertility_quality = "excellent" if metrics.fertility < 1.5 else "good" if metrics.fertility < 2.5 else "poor"
|
| 974 |
strr_quality = "excellent" if metrics.single_token_retention_rate > 0.5 else "good" if metrics.single_token_retention_rate > 0.3 else "poor"
|
| 975 |
compression_quality = "excellent" if metrics.compression_ratio > 4 else "good" if metrics.compression_ratio > 2.5 else "poor"
|
|
@@ -999,34 +1210,33 @@ def generate_metrics_card(metrics: TokenizationMetrics, info: TokenizerInfo) ->
|
|
| 999 |
<div class="metric-card {strr_quality}">
|
| 1000 |
<div class="metric-icon">β¨</div>
|
| 1001 |
<div class="metric-value">{metrics.single_token_retention_rate:.1%}</div>
|
| 1002 |
-
<div class="metric-label">Single Token
|
| 1003 |
<div class="metric-hint">Higher is better</div>
|
| 1004 |
</div>
|
| 1005 |
|
| 1006 |
<div class="metric-card">
|
| 1007 |
-
<div class="metric-icon"
|
| 1008 |
<div class="metric-value">{metrics.char_per_token:.2f}</div>
|
| 1009 |
<div class="metric-label">Characters/Token</div>
|
| 1010 |
</div>
|
| 1011 |
|
| 1012 |
-
<div class="metric-card">
|
| 1013 |
-
<div class="metric-icon"
|
| 1014 |
-
<div class="metric-value">{metrics.
|
| 1015 |
-
<div class="metric-label">
|
|
|
|
| 1016 |
</div>
|
| 1017 |
|
| 1018 |
-
<div class="metric-card
|
| 1019 |
-
<div class="metric-icon"
|
| 1020 |
<div class="metric-value">{metrics.arabic_fertility:.3f}</div>
|
| 1021 |
<div class="metric-label">Arabic Fertility</div>
|
| 1022 |
-
<div class="metric-hint">Arabic-specific efficiency</div>
|
| 1023 |
</div>
|
| 1024 |
|
| 1025 |
<div class="metric-card">
|
| 1026 |
-
<div class="metric-icon"
|
| 1027 |
-
<div class="metric-value">{metrics.
|
| 1028 |
-
<div class="metric-label">
|
| 1029 |
-
<div class="metric-hint">Lower is better (0% ideal)</div>
|
| 1030 |
</div>
|
| 1031 |
</div>
|
| 1032 |
'''
|
|
@@ -1034,44 +1244,40 @@ def generate_metrics_card(metrics: TokenizationMetrics, info: TokenizerInfo) ->
|
|
| 1034 |
def generate_tokenizer_info_card(info: TokenizerInfo) -> str:
|
| 1035 |
"""Generate tokenizer information card"""
|
| 1036 |
|
| 1037 |
-
dialect_badges = '
|
| 1038 |
-
|
| 1039 |
-
for d in info.dialect_support
|
| 1040 |
-
])
|
| 1041 |
|
| 1042 |
-
|
| 1043 |
-
f'<span class="feature-badge">{f}</span>'
|
| 1044 |
-
for f in info.special_features
|
| 1045 |
-
])
|
| 1046 |
-
|
| 1047 |
-
support_class = info.arabic_support.lower().replace(' ', '-')
|
| 1048 |
|
| 1049 |
return f'''
|
| 1050 |
-
<div class="
|
| 1051 |
-
<div class="
|
| 1052 |
<h3>{info.name}</h3>
|
| 1053 |
<span class="org-badge">{info.organization}</span>
|
| 1054 |
</div>
|
| 1055 |
-
|
| 1056 |
-
<
|
| 1057 |
-
|
| 1058 |
-
|
| 1059 |
-
|
|
|
|
|
|
|
| 1060 |
</div>
|
| 1061 |
-
<div class="
|
| 1062 |
-
<span class="
|
| 1063 |
-
<span class="
|
| 1064 |
</div>
|
| 1065 |
-
<div class="
|
| 1066 |
-
<span class="
|
| 1067 |
-
<span class="
|
| 1068 |
</div>
|
| 1069 |
-
<div class="
|
| 1070 |
-
<span class="
|
| 1071 |
-
<span class="support-
|
| 1072 |
</div>
|
| 1073 |
</div>
|
| 1074 |
-
|
|
|
|
| 1075 |
<div class="badge-group">
|
| 1076 |
<span class="badge-label">Dialects:</span>
|
| 1077 |
{dialect_badges}
|
|
@@ -1084,39 +1290,43 @@ def generate_tokenizer_info_card(info: TokenizerInfo) -> str:
|
|
| 1084 |
</div>
|
| 1085 |
'''
|
| 1086 |
|
| 1087 |
-
# ============================================================================
|
| 1088 |
-
# MAIN ANALYSIS FUNCTION
|
| 1089 |
-
# ============================================================================
|
| 1090 |
-
|
| 1091 |
def analyze_single_tokenizer(tokenizer_choice: str, text: str) -> Tuple[str, str, str, str]:
|
| 1092 |
-
"""Analyze
|
| 1093 |
|
| 1094 |
-
if not text.strip():
|
| 1095 |
return (
|
| 1096 |
-
|
| 1097 |
-
|
| 1098 |
-
|
| 1099 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1100 |
)
|
| 1101 |
|
| 1102 |
model_id = tokenizer_manager.get_model_id_from_choice(tokenizer_choice)
|
| 1103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1104 |
|
| 1105 |
try:
|
| 1106 |
-
metrics = analyze_tokenization(text, model_id,
|
| 1107 |
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
metrics_html = generate_metrics_card(metrics, info)
|
| 1111 |
tokens_html = generate_token_visualization(metrics.tokens, metrics.token_ids)
|
| 1112 |
|
| 1113 |
-
# Decoded text output
|
| 1114 |
decoded_html = f'''
|
| 1115 |
<div class="decoded-section">
|
| 1116 |
<h4>Decoded Output</h4>
|
| 1117 |
<div class="decoded-text" dir="auto">{metrics.decoded_text}</div>
|
| 1118 |
<div class="decoded-meta">
|
| 1119 |
-
|
| 1120 |
</div>
|
| 1121 |
</div>
|
| 1122 |
'''
|
|
@@ -1124,139 +1334,146 @@ def analyze_single_tokenizer(tokenizer_choice: str, text: str) -> Tuple[str, str
|
|
| 1124 |
return info_html, metrics_html, tokens_html, decoded_html
|
| 1125 |
|
| 1126 |
except Exception as e:
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
</div>
|
| 1132 |
-
'''
|
| 1133 |
-
return error_html, "", "", ""
|
| 1134 |
|
| 1135 |
def compare_tokenizers(tokenizer_choices: List[str], text: str) -> str:
|
| 1136 |
-
"""Compare multiple tokenizers
|
| 1137 |
|
| 1138 |
-
if not text.strip():
|
| 1139 |
-
return
|
| 1140 |
|
| 1141 |
if not tokenizer_choices or len(tokenizer_choices) < 2:
|
| 1142 |
-
return
|
| 1143 |
|
| 1144 |
results = []
|
| 1145 |
|
| 1146 |
for choice in tokenizer_choices:
|
| 1147 |
model_id = tokenizer_manager.get_model_id_from_choice(choice)
|
| 1148 |
-
|
| 1149 |
|
| 1150 |
-
|
| 1151 |
-
|
| 1152 |
-
|
| 1153 |
-
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1158 |
|
| 1159 |
-
# Sort by fertility (
|
| 1160 |
-
results.sort(key=lambda x: x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1161 |
|
| 1162 |
# Generate comparison table
|
| 1163 |
-
|
| 1164 |
-
for i, (info, metrics) in enumerate(results):
|
| 1165 |
-
rank_class = "rank-1" if i == 0 else "rank-2" if i == 1 else "rank-3" if i == 2 else ""
|
| 1166 |
-
|
| 1167 |
-
table_rows.append(f'''
|
| 1168 |
-
<tr class="{rank_class}">
|
| 1169 |
-
<td class="rank-cell">{i + 1}</td>
|
| 1170 |
-
<td class="name-cell">
|
| 1171 |
-
<strong>{info.name}</strong>
|
| 1172 |
-
<span class="org-small">{info.organization}</span>
|
| 1173 |
-
</td>
|
| 1174 |
-
<td class="metric-cell">{metrics.total_tokens}</td>
|
| 1175 |
-
<td class="metric-cell highlight">{metrics.fertility:.3f}</td>
|
| 1176 |
-
<td class="metric-cell">{metrics.compression_ratio:.2f}</td>
|
| 1177 |
-
<td class="metric-cell">{metrics.single_token_retention_rate:.1%}</td>
|
| 1178 |
-
<td class="metric-cell">{metrics.arabic_fertility:.3f}</td>
|
| 1179 |
-
<td class="metric-cell">{metrics.oov_percentage:.1f}%</td>
|
| 1180 |
-
<td class="metric-cell">{metrics.tokenization_time_ms:.2f}ms</td>
|
| 1181 |
-
</tr>
|
| 1182 |
-
''')
|
| 1183 |
-
|
| 1184 |
-
return f'''
|
| 1185 |
<div class="comparison-container">
|
| 1186 |
-
<h3>Tokenizer Comparison Results</h3>
|
| 1187 |
-
<p class="comparison-subtitle">Ranked by fertility (lower is better)</p>
|
| 1188 |
<table class="comparison-table">
|
| 1189 |
<thead>
|
| 1190 |
<tr>
|
| 1191 |
-
<th
|
| 1192 |
<th>Tokenizer</th>
|
|
|
|
| 1193 |
<th>Tokens</th>
|
| 1194 |
<th>Fertility β</th>
|
| 1195 |
-
<th>Compression
|
| 1196 |
-
<th>STRR
|
| 1197 |
-
<th>Arabic Fertility</th>
|
| 1198 |
<th>OOV %</th>
|
| 1199 |
-
<th>Time</th>
|
| 1200 |
</tr>
|
| 1201 |
</thead>
|
| 1202 |
<tbody>
|
| 1203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1204 |
</tbody>
|
| 1205 |
</table>
|
| 1206 |
-
<div class="comparison-legend">
|
| 1207 |
-
<span class="legend-item"><span class="legend-color rank-1"></span> Best</span>
|
| 1208 |
-
<span class="legend-item"><span class="legend-color rank-2"></span> Runner-up</span>
|
| 1209 |
-
<span class="legend-item"><span class="legend-color rank-3"></span> Third</span>
|
| 1210 |
-
</div>
|
| 1211 |
</div>
|
| 1212 |
'''
|
|
|
|
|
|
|
| 1213 |
|
| 1214 |
# ============================================================================
|
| 1215 |
-
# CSS
|
| 1216 |
# ============================================================================
|
| 1217 |
|
| 1218 |
CUSTOM_CSS = """
|
| 1219 |
-
/* =====
|
| 1220 |
:root {
|
| 1221 |
-
--primary: #
|
| 1222 |
-
--primary-light: #
|
| 1223 |
-
--
|
| 1224 |
-
--accent: #
|
| 1225 |
-
--
|
| 1226 |
-
--success: #2e7d32;
|
| 1227 |
--warning: #f57c00;
|
| 1228 |
--error: #c62828;
|
| 1229 |
-
--bg-
|
| 1230 |
-
--bg-
|
| 1231 |
-
--bg-
|
| 1232 |
-
--text-primary: #
|
| 1233 |
-
--text-secondary: #
|
| 1234 |
-
--border: #
|
| 1235 |
-
--gradient-1: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 1236 |
-
--gradient-2: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
| 1237 |
-
--gradient-arabic: linear-gradient(135deg, #11998e 0%, #38ef7d 100%);
|
| 1238 |
-
}
|
| 1239 |
-
|
| 1240 |
-
.gradio-container {
|
| 1241 |
-
background: var(--bg-dark) !important;
|
| 1242 |
-
font-family: 'IBM Plex Sans Arabic', 'Segoe UI', system-ui, sans-serif !important;
|
| 1243 |
}
|
| 1244 |
|
| 1245 |
-
/* ===== HEADER
|
| 1246 |
.header-section {
|
| 1247 |
text-align: center;
|
| 1248 |
-
padding: 2rem;
|
| 1249 |
-
background: var(--
|
| 1250 |
border-radius: 16px;
|
| 1251 |
-
margin-bottom:
|
| 1252 |
}
|
| 1253 |
|
| 1254 |
.header-section h1 {
|
| 1255 |
font-size: 2.5rem;
|
| 1256 |
-
font-weight: 700;
|
| 1257 |
color: white;
|
| 1258 |
margin-bottom: 0.5rem;
|
| 1259 |
-
text-shadow: 0 2px 10px rgba(0,0,0,0.3);
|
| 1260 |
}
|
| 1261 |
|
| 1262 |
.header-section p {
|
|
@@ -1264,85 +1481,138 @@ CUSTOM_CSS = """
|
|
| 1264 |
font-size: 1.1rem;
|
| 1265 |
}
|
| 1266 |
|
| 1267 |
-
/* =====
|
| 1268 |
-
.
|
| 1269 |
-
display: flex;
|
| 1270 |
-
flex-wrap: wrap;
|
| 1271 |
-
gap: 8px;
|
| 1272 |
-
padding: 1.5rem;
|
| 1273 |
background: var(--bg-card);
|
| 1274 |
border-radius: 12px;
|
|
|
|
| 1275 |
border: 1px solid var(--border);
|
| 1276 |
-
direction: rtl;
|
| 1277 |
}
|
| 1278 |
|
| 1279 |
-
.
|
| 1280 |
-
display:
|
| 1281 |
-
|
| 1282 |
align-items: center;
|
| 1283 |
-
|
| 1284 |
-
border-radius: 8px;
|
| 1285 |
-
font-family: 'IBM Plex Mono', monospace;
|
| 1286 |
-
font-size: 0.95rem;
|
| 1287 |
-
transition: transform 0.2s, box-shadow 0.2s;
|
| 1288 |
-
cursor: default;
|
| 1289 |
}
|
| 1290 |
|
| 1291 |
-
.
|
| 1292 |
-
|
| 1293 |
-
|
| 1294 |
}
|
| 1295 |
|
| 1296 |
-
.
|
| 1297 |
-
|
| 1298 |
-
|
| 1299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1300 |
}
|
| 1301 |
|
| 1302 |
/* ===== METRICS GRID ===== */
|
| 1303 |
.metrics-grid {
|
| 1304 |
display: grid;
|
| 1305 |
-
grid-template-columns: repeat(auto-fit, minmax(
|
| 1306 |
gap: 1rem;
|
| 1307 |
-
|
| 1308 |
}
|
| 1309 |
|
| 1310 |
.metric-card {
|
| 1311 |
background: var(--bg-card);
|
| 1312 |
-
border: 1px solid var(--border);
|
| 1313 |
border-radius: 12px;
|
| 1314 |
-
padding:
|
| 1315 |
text-align: center;
|
| 1316 |
-
|
|
|
|
| 1317 |
}
|
| 1318 |
|
| 1319 |
.metric-card:hover {
|
| 1320 |
-
transform: translateY(-
|
| 1321 |
-
border-color: var(--primary-light);
|
| 1322 |
}
|
| 1323 |
|
| 1324 |
.metric-card.excellent {
|
| 1325 |
border-color: var(--success);
|
| 1326 |
-
background: linear-gradient(to bottom, rgba(
|
| 1327 |
}
|
| 1328 |
|
| 1329 |
.metric-card.good {
|
| 1330 |
-
border-color: var(--
|
| 1331 |
-
background: linear-gradient(to bottom, rgba(
|
| 1332 |
}
|
| 1333 |
|
| 1334 |
.metric-card.poor {
|
| 1335 |
-
border-color: var(--
|
| 1336 |
-
background: linear-gradient(to bottom, rgba(
|
| 1337 |
}
|
| 1338 |
|
| 1339 |
.metric-card.primary {
|
| 1340 |
-
|
| 1341 |
-
|
| 1342 |
-
|
| 1343 |
-
.metric-card.arabic {
|
| 1344 |
-
background: linear-gradient(to bottom, rgba(17, 153, 142, 0.2), transparent);
|
| 1345 |
-
border-color: #11998e;
|
| 1346 |
}
|
| 1347 |
|
| 1348 |
.metric-icon {
|
|
@@ -1351,16 +1621,15 @@ CUSTOM_CSS = """
|
|
| 1351 |
}
|
| 1352 |
|
| 1353 |
.metric-value {
|
| 1354 |
-
font-size: 1.
|
| 1355 |
font-weight: 700;
|
| 1356 |
color: var(--text-primary);
|
| 1357 |
-
margin-bottom: 0.25rem;
|
| 1358 |
}
|
| 1359 |
|
| 1360 |
.metric-label {
|
| 1361 |
-
font-size: 0.
|
| 1362 |
color: var(--text-secondary);
|
| 1363 |
-
margin-
|
| 1364 |
}
|
| 1365 |
|
| 1366 |
.metric-hint {
|
|
@@ -1369,244 +1638,117 @@ CUSTOM_CSS = """
|
|
| 1369 |
opacity: 0.7;
|
| 1370 |
}
|
| 1371 |
|
| 1372 |
-
/* =====
|
| 1373 |
-
.
|
| 1374 |
-
|
| 1375 |
-
|
|
|
|
|
|
|
|
|
|
| 1376 |
border-radius: 12px;
|
| 1377 |
-
|
| 1378 |
}
|
| 1379 |
|
| 1380 |
-
.
|
| 1381 |
-
display: flex;
|
|
|
|
| 1382 |
align-items: center;
|
| 1383 |
-
|
| 1384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1385 |
}
|
| 1386 |
|
| 1387 |
-
.
|
| 1388 |
-
|
| 1389 |
-
color: var(--text-primary);
|
| 1390 |
-
font-size: 1.5rem;
|
| 1391 |
}
|
| 1392 |
|
| 1393 |
-
.
|
| 1394 |
-
|
| 1395 |
-
|
| 1396 |
-
|
| 1397 |
-
font-size: 0.8rem;
|
| 1398 |
-
color: white;
|
| 1399 |
}
|
| 1400 |
|
| 1401 |
-
|
| 1402 |
-
|
| 1403 |
-
|
| 1404 |
-
|
|
|
|
|
|
|
| 1405 |
}
|
| 1406 |
|
| 1407 |
-
.
|
| 1408 |
-
|
| 1409 |
-
grid-template-columns: repeat(2, 1fr);
|
| 1410 |
-
gap: 0.75rem;
|
| 1411 |
margin-bottom: 1rem;
|
| 1412 |
}
|
| 1413 |
|
| 1414 |
-
.
|
| 1415 |
-
|
| 1416 |
-
|
| 1417 |
-
|
| 1418 |
-
|
| 1419 |
-
.meta-label {
|
| 1420 |
-
color: var(--text-secondary);
|
| 1421 |
-
font-size: 0.85rem;
|
| 1422 |
-
}
|
| 1423 |
-
|
| 1424 |
-
.meta-value {
|
| 1425 |
color: var(--text-primary);
|
| 1426 |
-
font-weight: 500;
|
| 1427 |
-
}
|
| 1428 |
-
|
| 1429 |
-
.support-badge {
|
| 1430 |
-
padding: 2px 8px;
|
| 1431 |
-
border-radius: 4px;
|
| 1432 |
-
font-size: 0.8rem;
|
| 1433 |
-
}
|
| 1434 |
-
|
| 1435 |
-
.support-badge.native {
|
| 1436 |
-
background: var(--success);
|
| 1437 |
-
color: white;
|
| 1438 |
-
}
|
| 1439 |
-
|
| 1440 |
-
.support-badge.adapted {
|
| 1441 |
-
background: var(--primary-light);
|
| 1442 |
-
color: white;
|
| 1443 |
-
}
|
| 1444 |
-
|
| 1445 |
-
.support-badge.supported {
|
| 1446 |
-
background: var(--warning);
|
| 1447 |
-
color: white;
|
| 1448 |
}
|
| 1449 |
|
| 1450 |
-
.
|
| 1451 |
-
|
| 1452 |
-
color: white;
|
| 1453 |
-
}
|
| 1454 |
-
|
| 1455 |
-
.tokenizer-badges {
|
| 1456 |
-
display: flex;
|
| 1457 |
-
flex-direction: column;
|
| 1458 |
-
gap: 0.75rem;
|
| 1459 |
-
}
|
| 1460 |
-
|
| 1461 |
-
.badge-group {
|
| 1462 |
-
display: flex;
|
| 1463 |
-
flex-wrap: wrap;
|
| 1464 |
-
align-items: center;
|
| 1465 |
-
gap: 0.5rem;
|
| 1466 |
-
}
|
| 1467 |
-
|
| 1468 |
-
.badge-label {
|
| 1469 |
-
color: var(--text-secondary);
|
| 1470 |
font-size: 0.85rem;
|
| 1471 |
-
|
| 1472 |
-
|
| 1473 |
-
.dialect-badge, .feature-badge {
|
| 1474 |
-
background: var(--bg-elevated);
|
| 1475 |
-
border: 1px solid var(--border);
|
| 1476 |
-
padding: 4px 10px;
|
| 1477 |
-
border-radius: 6px;
|
| 1478 |
-
font-size: 0.75rem;
|
| 1479 |
-
color: var(--text-primary);
|
| 1480 |
}
|
| 1481 |
|
| 1482 |
/* ===== COMPARISON TABLE ===== */
|
| 1483 |
.comparison-container {
|
| 1484 |
-
|
| 1485 |
-
border-radius: 12px;
|
| 1486 |
-
padding: 1.5rem;
|
| 1487 |
-
border: 1px solid var(--border);
|
| 1488 |
-
}
|
| 1489 |
-
|
| 1490 |
-
.comparison-container h3 {
|
| 1491 |
-
color: var(--text-primary);
|
| 1492 |
-
margin-bottom: 0.25rem;
|
| 1493 |
-
}
|
| 1494 |
-
|
| 1495 |
-
.comparison-subtitle {
|
| 1496 |
-
color: var(--text-secondary);
|
| 1497 |
-
font-size: 0.9rem;
|
| 1498 |
-
margin-bottom: 1.5rem;
|
| 1499 |
}
|
| 1500 |
|
| 1501 |
.comparison-table {
|
| 1502 |
width: 100%;
|
| 1503 |
border-collapse: collapse;
|
| 1504 |
-
|
| 1505 |
}
|
| 1506 |
|
| 1507 |
.comparison-table th {
|
| 1508 |
-
background: var(--
|
| 1509 |
-
color:
|
| 1510 |
-
padding:
|
| 1511 |
text-align: left;
|
| 1512 |
-
font-weight:
|
| 1513 |
-
border-bottom: 2px solid var(--border);
|
| 1514 |
}
|
| 1515 |
|
| 1516 |
.comparison-table td {
|
| 1517 |
-
padding:
|
| 1518 |
border-bottom: 1px solid var(--border);
|
| 1519 |
color: var(--text-primary);
|
| 1520 |
}
|
| 1521 |
|
| 1522 |
-
.comparison-table tr
|
| 1523 |
-
background:
|
| 1524 |
}
|
| 1525 |
|
| 1526 |
-
.comparison-table
|
| 1527 |
-
background: linear-gradient(90deg, rgba(
|
| 1528 |
}
|
| 1529 |
|
| 1530 |
-
.comparison-table
|
| 1531 |
-
background: linear-gradient(90deg, rgba(
|
| 1532 |
}
|
| 1533 |
|
| 1534 |
-
.rank-
|
| 1535 |
-
|
| 1536 |
-
text-align: center;
|
| 1537 |
-
}
|
| 1538 |
-
|
| 1539 |
-
.name-cell strong {
|
| 1540 |
-
display: block;
|
| 1541 |
-
}
|
| 1542 |
-
|
| 1543 |
-
.org-small {
|
| 1544 |
-
font-size: 0.75rem;
|
| 1545 |
-
color: var(--text-secondary);
|
| 1546 |
-
}
|
| 1547 |
-
|
| 1548 |
-
.metric-cell {
|
| 1549 |
-
text-align: center;
|
| 1550 |
}
|
| 1551 |
|
| 1552 |
-
.
|
| 1553 |
-
|
| 1554 |
-
|
| 1555 |
-
}
|
| 1556 |
-
|
| 1557 |
-
.comparison-legend {
|
| 1558 |
-
display: flex;
|
| 1559 |
-
gap: 1.5rem;
|
| 1560 |
-
margin-top: 1rem;
|
| 1561 |
-
padding-top: 1rem;
|
| 1562 |
-
border-top: 1px solid var(--border);
|
| 1563 |
-
}
|
| 1564 |
-
|
| 1565 |
-
.legend-item {
|
| 1566 |
-
display: flex;
|
| 1567 |
-
align-items: center;
|
| 1568 |
-
gap: 0.5rem;
|
| 1569 |
-
font-size: 0.85rem;
|
| 1570 |
-
color: var(--text-secondary);
|
| 1571 |
-
}
|
| 1572 |
-
|
| 1573 |
-
.legend-color {
|
| 1574 |
-
width: 16px;
|
| 1575 |
-
height: 16px;
|
| 1576 |
-
border-radius: 4px;
|
| 1577 |
-
}
|
| 1578 |
-
|
| 1579 |
-
.legend-color.rank-1 { background: var(--success); }
|
| 1580 |
-
.legend-color.rank-2 { background: var(--primary-light); }
|
| 1581 |
-
.legend-color.rank-3 { background: var(--warning); }
|
| 1582 |
-
|
| 1583 |
-
/* ===== DECODED SECTION ===== */
|
| 1584 |
-
.decoded-section {
|
| 1585 |
-
background: var(--bg-card);
|
| 1586 |
-
border: 1px solid var(--border);
|
| 1587 |
-
border-radius: 12px;
|
| 1588 |
-
padding: 1.5rem;
|
| 1589 |
-
}
|
| 1590 |
-
|
| 1591 |
-
.decoded-section h4 {
|
| 1592 |
-
color: var(--text-primary);
|
| 1593 |
-
margin-bottom: 1rem;
|
| 1594 |
}
|
| 1595 |
|
| 1596 |
-
.
|
| 1597 |
-
|
| 1598 |
-
padding: 1rem;
|
| 1599 |
-
border-radius: 8px;
|
| 1600 |
-
font-family: 'IBM Plex Sans Arabic', serif;
|
| 1601 |
-
font-size: 1.1rem;
|
| 1602 |
-
line-height: 1.8;
|
| 1603 |
-
color: var(--text-primary);
|
| 1604 |
}
|
| 1605 |
|
| 1606 |
-
.
|
| 1607 |
-
|
| 1608 |
-
font-size: 0.85rem;
|
| 1609 |
-
color: var(--text-secondary);
|
| 1610 |
}
|
| 1611 |
|
| 1612 |
/* ===== UTILITY CLASSES ===== */
|
|
@@ -1661,14 +1803,14 @@ def create_interface():
|
|
| 1661 |
|
| 1662 |
available_tokenizers = tokenizer_manager.get_tokenizer_choices()
|
| 1663 |
|
| 1664 |
-
# Group tokenizers by type
|
| 1665 |
-
arabic_specific = [t for t in available_tokenizers if any(x in t for x in ['AraBERT', 'CAMeL', 'MARBERT', 'ARBERT'])]
|
| 1666 |
-
arabic_llms = [t for t in available_tokenizers if any(x in t for x in ['Jais', 'AceGPT'])]
|
| 1667 |
multilingual = [t for t in available_tokenizers if t not in arabic_specific and t not in arabic_llms]
|
| 1668 |
|
| 1669 |
with gr.Blocks(css=CUSTOM_CSS, title="Arabic Tokenizer Arena Pro", theme=gr.themes.Base(
|
| 1670 |
-
primary_hue="
|
| 1671 |
-
secondary_hue="
|
| 1672 |
neutral_hue="slate",
|
| 1673 |
font=["IBM Plex Sans Arabic", "system-ui", "sans-serif"]
|
| 1674 |
)) as demo:
|
|
@@ -1715,7 +1857,6 @@ def create_interface():
|
|
| 1715 |
tokens_output = gr.HTML(label="Token Visualization")
|
| 1716 |
decoded_output = gr.HTML(label="Decoded Output")
|
| 1717 |
|
| 1718 |
-
# Event handlers
|
| 1719 |
sample_dropdown.change(
|
| 1720 |
lambda x: SAMPLE_TEXTS.get(x, ""),
|
| 1721 |
inputs=[sample_dropdown],
|
|
@@ -1768,7 +1909,70 @@ def create_interface():
|
|
| 1768 |
outputs=[comparison_output]
|
| 1769 |
)
|
| 1770 |
|
| 1771 |
-
# ===== TAB 3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1772 |
with gr.TabItem("π Metrics Guide", id="guide"):
|
| 1773 |
gr.Markdown("""
|
| 1774 |
## Tokenization Evaluation Metrics Guide
|
|
@@ -1803,18 +2007,9 @@ def create_interface():
|
|
| 1803 |
- *"Evaluating Various Tokenizers for Arabic Text Classification"* (Alyafeai et al.)
|
| 1804 |
- *"Beyond Fertility: STRR as a Metric for Multilingual Tokenization"* (2025)
|
| 1805 |
- *"Arabic Stable LM: Adapting Stable LM to Arabic"* (2024)
|
| 1806 |
-
|
| 1807 |
-
### Tokenizer Algorithm Types
|
| 1808 |
-
|
| 1809 |
-
- **BPE (Byte-Pair Encoding)**: Iteratively merges frequent character pairs
|
| 1810 |
-
- **Byte-Level BPE**: BPE applied to UTF-8 bytes instead of characters
|
| 1811 |
-
- **WordPiece**: Google's variant, used in BERT models
|
| 1812 |
-
- **SentencePiece**: Language-independent, uses unigram model
|
| 1813 |
-
- **Unigram**: Probabilistic subword model
|
| 1814 |
-
- **Tiktoken**: OpenAI's optimized BPE implementation
|
| 1815 |
""")
|
| 1816 |
|
| 1817 |
-
# ===== TAB
|
| 1818 |
with gr.TabItem("βΉοΈ About", id="about"):
|
| 1819 |
gr.Markdown(f"""
|
| 1820 |
## Arabic Tokenizer Arena Pro
|
|
@@ -1824,13 +2019,13 @@ def create_interface():
|
|
| 1824 |
### Available Tokenizers: {len(available_tokenizers)}
|
| 1825 |
|
| 1826 |
**Arabic-Specific Models:**
|
| 1827 |
-
{chr(10).join(['- ' + t for t in arabic_specific])}
|
| 1828 |
|
| 1829 |
**Arabic LLMs:**
|
| 1830 |
-
{chr(10).join(['- ' + t for t in arabic_llms])}
|
| 1831 |
|
| 1832 |
**Multilingual LLMs:**
|
| 1833 |
-
{chr(10).join(['- ' + t for t in multilingual])}
|
| 1834 |
|
| 1835 |
### Features
|
| 1836 |
|
|
@@ -1838,6 +2033,7 @@ def create_interface():
|
|
| 1838 |
β
Arabic-specific analysis (dialect support, diacritic preservation)
|
| 1839 |
β
Side-by-side tokenizer comparison
|
| 1840 |
β
Beautiful token visualization
|
|
|
|
| 1841 |
β
Support for MSA, dialectal Arabic, and Classical Arabic
|
| 1842 |
β
Research-backed evaluation methodology
|
| 1843 |
|
|
@@ -1861,4 +2057,4 @@ def create_interface():
|
|
| 1861 |
|
| 1862 |
if __name__ == "__main__":
|
| 1863 |
demo = create_interface()
|
| 1864 |
-
demo.launch(
|
|
|
|
| 4 |
A comprehensive research and production-grade tool for evaluating Arabic tokenizers
|
| 5 |
across multiple dimensions: efficiency, coverage, morphological awareness, and more.
|
| 6 |
|
| 7 |
+
Now with LEADERBOARD - imports real Arabic datasets from HuggingFace!
|
| 8 |
+
|
| 9 |
Supports:
|
| 10 |
- Arabic-specific tokenizers (Aranizer, AraBERT, CAMeLBERT, MARBERT, etc.)
|
| 11 |
- Major LLM tokenizers (Jais, AceGPT, Falcon-Arabic, ALLaM, Qwen, Llama, Mistral, GPT)
|
| 12 |
- Comprehensive evaluation metrics based on latest research
|
| 13 |
+
- Real dataset benchmarking from HuggingFace
|
| 14 |
"""
|
| 15 |
|
| 16 |
import gradio as gr
|
|
|
|
| 21 |
from typing import Dict, List, Tuple, Optional, Any
|
| 22 |
from dataclasses import dataclass, field
|
| 23 |
from enum import Enum
|
| 24 |
+
from collections import defaultdict
|
| 25 |
+
import statistics
|
| 26 |
import os
|
| 27 |
|
| 28 |
# Hugging Face authentication
|
|
|
|
| 35 |
from transformers import AutoTokenizer, logging
|
| 36 |
logging.set_verbosity_error()
|
| 37 |
|
| 38 |
+
# Import datasets library for leaderboard
|
| 39 |
+
from datasets import load_dataset
|
| 40 |
+
|
| 41 |
# ============================================================================
|
| 42 |
# DATA CLASSES AND ENUMS
|
| 43 |
# ============================================================================
|
|
|
|
| 212 |
dialect_support=["MSA"],
|
| 213 |
special_features=["100K vocabulary", "MSA focused"]
|
| 214 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
# ========== ARABIC-SPECIFIC TOKENIZERS ==========
|
| 217 |
"riotu-lab/Aranizer-PBE-86k": TokenizerInfo(
|
|
|
|
| 238 |
dialect_support=["MSA"],
|
| 239 |
special_features=["Low fertility", "SentencePiece", "86K vocab"]
|
| 240 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
# ========== ARABIC-SPECIFIC LLMs ==========
|
| 243 |
"ALLaM-AI/ALLaM-7B-Instruct-preview": TokenizerInfo(
|
|
|
|
| 288 |
dialect_support=["MSA"],
|
| 289 |
special_features=["LLaMA-based", "Cultural alignment", "RLHF", "Chat"]
|
| 290 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
"silma-ai/SILMA-9B-Instruct-v1.0": TokenizerInfo(
|
| 292 |
name="SILMA 9B Instruct",
|
| 293 |
model_id="silma-ai/SILMA-9B-Instruct-v1.0",
|
|
|
|
| 300 |
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
|
| 301 |
special_features=["Gemma-based", "SOTA 9B class", "Efficient"]
|
| 302 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
"QCRI/Fanar-1-9B-Instruct": TokenizerInfo(
|
| 304 |
name="Fanar 9B Instruct",
|
| 305 |
model_id="QCRI/Fanar-1-9B-Instruct",
|
|
|
|
| 312 |
dialect_support=["MSA", "Gulf", "Egyptian", "Levantine"],
|
| 313 |
special_features=["Islamic RAG", "Cultural alignment", "Gemma-based"]
|
| 314 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
"Navid-AI/Yehia-7B-preview": TokenizerInfo(
|
| 316 |
name="Yehia 7B Preview",
|
| 317 |
model_id="Navid-AI/Yehia-7B-preview",
|
|
|
|
| 338 |
dialect_support=["Darija", "MSA"],
|
| 339 |
special_features=["Moroccan dialect", "Transliteration", "Cultural"]
|
| 340 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
# ========== MULTILINGUAL LLMs WITH ARABIC SUPPORT ==========
|
| 343 |
"Qwen/Qwen2.5-7B": TokenizerInfo(
|
|
|
|
| 352 |
dialect_support=["MSA"],
|
| 353 |
special_features=["152K vocab", "128K context", "30+ languages"]
|
| 354 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
"google/gemma-2-9b": TokenizerInfo(
|
| 356 |
name="Gemma 2 9B",
|
| 357 |
model_id="google/gemma-2-9b",
|
|
|
|
| 364 |
dialect_support=["MSA"],
|
| 365 |
special_features=["256K vocab", "Efficient architecture"]
|
| 366 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
"mistralai/Mistral-7B-v0.3": TokenizerInfo(
|
| 368 |
name="Mistral 7B v0.3",
|
| 369 |
model_id="mistralai/Mistral-7B-v0.3",
|
|
|
|
| 388 |
dialect_support=["MSA"],
|
| 389 |
special_features=["Tekken tokenizer", "131K vocab", "Multilingual optimized"]
|
| 390 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
"xlm-roberta-base": TokenizerInfo(
|
| 392 |
name="XLM-RoBERTa Base",
|
| 393 |
model_id="xlm-roberta-base",
|
|
|
|
| 412 |
dialect_support=["MSA"],
|
| 413 |
special_features=["Baseline model", "104 languages"]
|
| 414 |
),
|
|
|
|
|
|
|
| 415 |
"tiiuae/falcon-7b": TokenizerInfo(
|
| 416 |
name="Falcon 7B",
|
| 417 |
model_id="tiiuae/falcon-7b",
|
|
|
|
| 424 |
dialect_support=["MSA"],
|
| 425 |
special_features=["65K vocab", "RefinedWeb trained"]
|
| 426 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
}
|
| 428 |
|
| 429 |
+
# ============================================================================
|
| 430 |
+
# LEADERBOARD DATASETS CONFIGURATION - Real HuggingFace Datasets
|
| 431 |
+
# ============================================================================
|
| 432 |
+
|
| 433 |
+
LEADERBOARD_DATASETS = {
|
| 434 |
+
# MSA Benchmarks
|
| 435 |
+
"arabic_mmlu": {
|
| 436 |
+
"hf_id": "MBZUAI/ArabicMMLU",
|
| 437 |
+
"name": "ArabicMMLU",
|
| 438 |
+
"category": "MSA Benchmark",
|
| 439 |
+
"text_column": "Question",
|
| 440 |
+
"split": "test",
|
| 441 |
+
"subset": None,
|
| 442 |
+
"samples": 500,
|
| 443 |
+
"description": "Multi-task benchmark from Arab school exams (14,575 MCQs)"
|
| 444 |
+
},
|
| 445 |
+
|
| 446 |
+
# Dialectal Arabic
|
| 447 |
+
"arsentd_lev": {
|
| 448 |
+
"hf_id": "ramybaly/arsentd_lev",
|
| 449 |
+
"name": "ArSenTD-LEV",
|
| 450 |
+
"category": "Levantine Dialect",
|
| 451 |
+
"text_column": "Tweet",
|
| 452 |
+
"split": "train",
|
| 453 |
+
"subset": None,
|
| 454 |
+
"samples": 500,
|
| 455 |
+
"description": "Levantine Arabic tweets (Jordan, Lebanon, Syria, Palestine)"
|
| 456 |
+
},
|
| 457 |
+
|
| 458 |
+
# Classical Arabic
|
| 459 |
+
"athar": {
|
| 460 |
+
"hf_id": "mohamed-khalil/ATHAR",
|
| 461 |
+
"name": "ATHAR Classical",
|
| 462 |
+
"category": "Classical Arabic",
|
| 463 |
+
"text_column": "arabic",
|
| 464 |
+
"split": "train",
|
| 465 |
+
"subset": None,
|
| 466 |
+
"samples": 500,
|
| 467 |
+
"description": "66K classical Arabic sentences with translations"
|
| 468 |
+
},
|
| 469 |
+
|
| 470 |
+
# Question Answering
|
| 471 |
+
"arcd": {
|
| 472 |
+
"hf_id": "arcd",
|
| 473 |
+
"name": "ARCD",
|
| 474 |
+
"category": "QA Dataset",
|
| 475 |
+
"text_column": "context",
|
| 476 |
+
"split": "train",
|
| 477 |
+
"subset": None,
|
| 478 |
+
"samples": 300,
|
| 479 |
+
"description": "Arabic Reading Comprehension Dataset (1,395 questions)"
|
| 480 |
+
},
|
| 481 |
+
|
| 482 |
+
# Poetry
|
| 483 |
+
"ashaar": {
|
| 484 |
+
"hf_id": "arbml/Ashaar_dataset",
|
| 485 |
+
"name": "Ashaar Poetry",
|
| 486 |
+
"category": "Poetry",
|
| 487 |
+
"text_column": "poem_text",
|
| 488 |
+
"split": "train",
|
| 489 |
+
"subset": None,
|
| 490 |
+
"samples": 500,
|
| 491 |
+
"description": "2M+ Arabic poetry verses with meter and theme labels"
|
| 492 |
+
},
|
| 493 |
+
|
| 494 |
+
# Religious - Hadith
|
| 495 |
+
"hadith": {
|
| 496 |
+
"hf_id": "gurgutan/sunnah_ar_en_dataset",
|
| 497 |
+
"name": "Hadith Collection",
|
| 498 |
+
"category": "Religious",
|
| 499 |
+
"text_column": "hadith_text_ar",
|
| 500 |
+
"split": "train",
|
| 501 |
+
"subset": None,
|
| 502 |
+
"samples": 400,
|
| 503 |
+
"description": "50,762 hadiths from 14 authentic books"
|
| 504 |
+
},
|
| 505 |
+
|
| 506 |
+
# Social Media
|
| 507 |
+
"arabic_sentiment": {
|
| 508 |
+
"hf_id": "arbml/Arabic_Sentiment_Twitter_Corpus",
|
| 509 |
+
"name": "Arabic Sentiment",
|
| 510 |
+
"category": "Social Media",
|
| 511 |
+
"text_column": "text",
|
| 512 |
+
"split": "train",
|
| 513 |
+
"subset": None,
|
| 514 |
+
"samples": 500,
|
| 515 |
+
"description": "Arabic Twitter sentiment corpus"
|
| 516 |
+
},
|
| 517 |
+
|
| 518 |
+
# News
|
| 519 |
+
"sanad": {
|
| 520 |
+
"hf_id": "arbml/SANAD",
|
| 521 |
+
"name": "SANAD News",
|
| 522 |
+
"category": "News",
|
| 523 |
+
"text_column": "text",
|
| 524 |
+
"split": "train",
|
| 525 |
+
"subset": "alarabiya",
|
| 526 |
+
"samples": 400,
|
| 527 |
+
"description": "Arabic news articles from Al Arabiya"
|
| 528 |
+
},
|
| 529 |
+
}
|
| 530 |
|
| 531 |
# ============================================================================
|
| 532 |
# TOKENIZER LOADER AND CACHE
|
|
|
|
| 554 |
except Exception as e:
|
| 555 |
print(f" β {info.name}: {str(e)[:50]}")
|
| 556 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
print(f"\nTotal available tokenizers: {len(self._available)}")
|
| 558 |
|
| 559 |
def get_tokenizer(self, model_id: str):
|
|
|
|
| 608 |
diacritics = set('ΩΩΩΩΩΩΩΩΩ°')
|
| 609 |
return any(c in diacritics for c in text)
|
| 610 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
def get_arabic_words(text: str) -> List[str]:
|
| 612 |
"""Extract Arabic words from text"""
|
|
|
|
| 613 |
words = text.split()
|
| 614 |
return [w for w in words if any(is_arabic_char(c) for c in w)]
|
| 615 |
|
|
|
|
| 703 |
decoded_text=decoded
|
| 704 |
)
|
| 705 |
|
| 706 |
+
# ============================================================================
|
| 707 |
+
# LEADERBOARD FUNCTIONS - Import Real Datasets from HuggingFace
|
| 708 |
+
# ============================================================================
|
| 709 |
+
|
| 710 |
+
class HFDatasetLoader:
|
| 711 |
+
"""Load Arabic datasets from HuggingFace"""
|
| 712 |
+
|
| 713 |
+
def __init__(self):
|
| 714 |
+
self.cache = {}
|
| 715 |
+
|
| 716 |
+
def load_dataset_texts(self, dataset_key: str) -> Tuple[List[str], str]:
|
| 717 |
+
"""Load texts from a HuggingFace dataset"""
|
| 718 |
+
|
| 719 |
+
if dataset_key in self.cache:
|
| 720 |
+
return self.cache[dataset_key], f"β
Loaded {len(self.cache[dataset_key])} samples (cached)"
|
| 721 |
+
|
| 722 |
+
config = LEADERBOARD_DATASETS.get(dataset_key)
|
| 723 |
+
if not config:
|
| 724 |
+
return [], f"β Unknown dataset: {dataset_key}"
|
| 725 |
+
|
| 726 |
+
try:
|
| 727 |
+
# Load dataset from HuggingFace
|
| 728 |
+
if config.get("subset"):
|
| 729 |
+
ds = load_dataset(
|
| 730 |
+
config["hf_id"],
|
| 731 |
+
config["subset"],
|
| 732 |
+
split=config["split"],
|
| 733 |
+
trust_remote_code=True
|
| 734 |
+
)
|
| 735 |
+
else:
|
| 736 |
+
ds = load_dataset(
|
| 737 |
+
config["hf_id"],
|
| 738 |
+
split=config["split"],
|
| 739 |
+
trust_remote_code=True
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
texts = []
|
| 743 |
+
text_col = config["text_column"]
|
| 744 |
+
|
| 745 |
+
# Try to find text column
|
| 746 |
+
if text_col not in ds.column_names:
|
| 747 |
+
for col in ["text", "content", "sentence", "arabic", "context", "Tweet", "question", "poem_text", "hadith_text_ar"]:
|
| 748 |
+
if col in ds.column_names:
|
| 749 |
+
text_col = col
|
| 750 |
+
break
|
| 751 |
+
|
| 752 |
+
# Extract texts
|
| 753 |
+
max_samples = config.get("samples", 500)
|
| 754 |
+
for i, item in enumerate(ds):
|
| 755 |
+
if i >= max_samples:
|
| 756 |
+
break
|
| 757 |
+
text = item.get(text_col, "")
|
| 758 |
+
if text and isinstance(text, str) and len(text.strip()) > 10:
|
| 759 |
+
texts.append(text.strip())
|
| 760 |
+
|
| 761 |
+
self.cache[dataset_key] = texts
|
| 762 |
+
return texts, f"β
Loaded {len(texts)} samples from HuggingFace"
|
| 763 |
+
|
| 764 |
+
except Exception as e:
|
| 765 |
+
return [], f"β Error loading {config['hf_id']}: {str(e)[:80]}"
|
| 766 |
+
|
| 767 |
+
def evaluate_tokenizer_on_texts(tokenizer, texts: List[str]) -> Optional[Dict]:
|
| 768 |
+
"""Evaluate a tokenizer on a list of texts"""
|
| 769 |
+
|
| 770 |
+
fertilities = []
|
| 771 |
+
compressions = []
|
| 772 |
+
unk_counts = 0
|
| 773 |
+
total_tokens = 0
|
| 774 |
+
|
| 775 |
+
for text in texts:
|
| 776 |
+
try:
|
| 777 |
+
tokens = tokenizer.encode(text, add_special_tokens=False)
|
| 778 |
+
decoded = tokenizer.convert_ids_to_tokens(tokens)
|
| 779 |
+
|
| 780 |
+
num_tokens = len(tokens)
|
| 781 |
+
num_words = len(text.split()) or 1
|
| 782 |
+
num_bytes = len(text.encode('utf-8'))
|
| 783 |
+
|
| 784 |
+
fertility = num_tokens / num_words
|
| 785 |
+
compression = num_bytes / num_tokens if num_tokens > 0 else 0
|
| 786 |
+
|
| 787 |
+
# Count UNKs
|
| 788 |
+
unk_token = getattr(tokenizer, 'unk_token', '[UNK]')
|
| 789 |
+
unks = sum(1 for t in decoded if t and (t == unk_token or '<unk>' in str(t).lower() or '[unk]' in str(t).lower()))
|
| 790 |
+
|
| 791 |
+
fertilities.append(fertility)
|
| 792 |
+
compressions.append(compression)
|
| 793 |
+
unk_counts += unks
|
| 794 |
+
total_tokens += num_tokens
|
| 795 |
+
|
| 796 |
+
except Exception:
|
| 797 |
+
continue
|
| 798 |
+
|
| 799 |
+
if not fertilities:
|
| 800 |
+
return None
|
| 801 |
+
|
| 802 |
+
return {
|
| 803 |
+
"avg_fertility": statistics.mean(fertilities),
|
| 804 |
+
"std_fertility": statistics.stdev(fertilities) if len(fertilities) > 1 else 0,
|
| 805 |
+
"avg_compression": statistics.mean(compressions),
|
| 806 |
+
"unk_ratio": unk_counts / total_tokens if total_tokens > 0 else 0,
|
| 807 |
+
"samples": len(fertilities)
|
| 808 |
+
}
|
| 809 |
+
|
| 810 |
+
def calculate_leaderboard_score(fertility: float, compression: float, unk_ratio: float) -> float:
|
| 811 |
+
"""Calculate overall score (0-100, higher is better)"""
|
| 812 |
+
# Lower fertility is better (ideal ~1.0 for Arabic)
|
| 813 |
+
fertility_score = max(0, min(1, 2.0 / fertility)) if fertility > 0 else 0
|
| 814 |
+
# Higher compression is better
|
| 815 |
+
compression_score = min(1, compression / 6)
|
| 816 |
+
# Lower UNK is better
|
| 817 |
+
unk_score = 1 - min(1, unk_ratio * 20)
|
| 818 |
+
|
| 819 |
+
# Weighted combination
|
| 820 |
+
score = (fertility_score * 0.45 + compression_score * 0.35 + unk_score * 0.20) * 100
|
| 821 |
+
return round(score, 1)
|
| 822 |
+
|
| 823 |
+
def run_leaderboard_evaluation(
|
| 824 |
+
selected_datasets: List[str],
|
| 825 |
+
selected_tokenizers: List[str],
|
| 826 |
+
progress=gr.Progress()
|
| 827 |
+
) -> Tuple[str, str, str]:
|
| 828 |
+
"""
|
| 829 |
+
Run the full leaderboard evaluation with real HF datasets
|
| 830 |
+
Returns: (leaderboard_html, per_dataset_html, status_message)
|
| 831 |
+
"""
|
| 832 |
+
|
| 833 |
+
if not selected_datasets:
|
| 834 |
+
return "", "", "β οΈ Please select at least one dataset"
|
| 835 |
+
|
| 836 |
+
if not selected_tokenizers:
|
| 837 |
+
return "", "", "β οΈ Please select at least one tokenizer"
|
| 838 |
+
|
| 839 |
+
loader = HFDatasetLoader()
|
| 840 |
+
results = defaultdict(dict)
|
| 841 |
+
|
| 842 |
+
# Status tracking
|
| 843 |
+
status_lines = []
|
| 844 |
+
|
| 845 |
+
# Load datasets from HuggingFace
|
| 846 |
+
status_lines.append("π **Loading Datasets from HuggingFace:**\n")
|
| 847 |
+
loaded_datasets = {}
|
| 848 |
+
|
| 849 |
+
for i, ds_key in enumerate(selected_datasets):
|
| 850 |
+
progress((i + 1) / len(selected_datasets) * 0.3, f"Loading {ds_key}...")
|
| 851 |
+
texts, msg = loader.load_dataset_texts(ds_key)
|
| 852 |
+
ds_name = LEADERBOARD_DATASETS[ds_key]["name"]
|
| 853 |
+
status_lines.append(f" β’ {ds_name}: {msg}")
|
| 854 |
+
if texts:
|
| 855 |
+
loaded_datasets[ds_key] = texts
|
| 856 |
+
|
| 857 |
+
if not loaded_datasets:
|
| 858 |
+
return "", "", "\n".join(status_lines) + "\n\nβ No datasets loaded successfully"
|
| 859 |
+
|
| 860 |
+
# Evaluate tokenizers
|
| 861 |
+
status_lines.append("\nπ **Evaluating Tokenizers:**\n")
|
| 862 |
+
|
| 863 |
+
tokenizer_cache = {}
|
| 864 |
+
total_steps = len(selected_tokenizers) * len(loaded_datasets)
|
| 865 |
+
current_step = 0
|
| 866 |
+
|
| 867 |
+
for tok_choice in selected_tokenizers:
|
| 868 |
+
# Get model ID from choice
|
| 869 |
+
tok_id = tokenizer_manager.get_model_id_from_choice(tok_choice)
|
| 870 |
+
tok_info = tokenizer_manager.get_available_tokenizers().get(tok_id)
|
| 871 |
+
tok_name = tok_info.name if tok_info else tok_choice
|
| 872 |
+
|
| 873 |
+
# Load tokenizer
|
| 874 |
+
try:
|
| 875 |
+
if tok_id not in tokenizer_cache:
|
| 876 |
+
tokenizer_cache[tok_id] = AutoTokenizer.from_pretrained(
|
| 877 |
+
tok_id, trust_remote_code=True
|
| 878 |
+
)
|
| 879 |
+
tokenizer = tokenizer_cache[tok_id]
|
| 880 |
+
status_lines.append(f" β’ {tok_name}: β
Loaded")
|
| 881 |
+
except Exception as e:
|
| 882 |
+
status_lines.append(f" β’ {tok_name}: β Failed ({str(e)[:30]})")
|
| 883 |
+
continue
|
| 884 |
+
|
| 885 |
+
# Evaluate on each dataset
|
| 886 |
+
for ds_key, texts in loaded_datasets.items():
|
| 887 |
+
current_step += 1
|
| 888 |
+
progress(0.3 + (current_step / total_steps) * 0.6, f"Evaluating {tok_name} on {ds_key}...")
|
| 889 |
+
|
| 890 |
+
metrics = evaluate_tokenizer_on_texts(tokenizer, texts)
|
| 891 |
+
if metrics:
|
| 892 |
+
results[tok_choice][ds_key] = metrics
|
| 893 |
+
|
| 894 |
+
# Generate leaderboard
|
| 895 |
+
progress(0.95, "Generating leaderboard...")
|
| 896 |
+
|
| 897 |
+
leaderboard_data = []
|
| 898 |
+
per_dataset_data = []
|
| 899 |
+
|
| 900 |
+
for tok_choice, ds_results in results.items():
|
| 901 |
+
if not ds_results:
|
| 902 |
+
continue
|
| 903 |
+
|
| 904 |
+
tok_id = tokenizer_manager.get_model_id_from_choice(tok_choice)
|
| 905 |
+
tok_info = tokenizer_manager.get_available_tokenizers().get(tok_id)
|
| 906 |
+
|
| 907 |
+
# Aggregate across datasets
|
| 908 |
+
all_fertility = [m["avg_fertility"] for m in ds_results.values()]
|
| 909 |
+
all_compression = [m["avg_compression"] for m in ds_results.values()]
|
| 910 |
+
all_unk = [m["unk_ratio"] for m in ds_results.values()]
|
| 911 |
+
|
| 912 |
+
avg_fertility = statistics.mean(all_fertility)
|
| 913 |
+
avg_compression = statistics.mean(all_compression)
|
| 914 |
+
avg_unk = statistics.mean(all_unk)
|
| 915 |
+
|
| 916 |
+
score = calculate_leaderboard_score(avg_fertility, avg_compression, avg_unk)
|
| 917 |
+
|
| 918 |
+
leaderboard_data.append({
|
| 919 |
+
"name": tok_info.name if tok_info else tok_choice,
|
| 920 |
+
"type": tok_info.type.value if tok_info else "Unknown",
|
| 921 |
+
"org": tok_info.organization if tok_info else "Unknown",
|
| 922 |
+
"score": score,
|
| 923 |
+
"fertility": avg_fertility,
|
| 924 |
+
"compression": avg_compression,
|
| 925 |
+
"unk_ratio": avg_unk,
|
| 926 |
+
"num_datasets": len(ds_results)
|
| 927 |
+
})
|
| 928 |
+
|
| 929 |
+
# Per-dataset row
|
| 930 |
+
per_ds_row = {"Tokenizer": tok_info.name if tok_info else tok_choice}
|
| 931 |
+
for ds_key in selected_datasets:
|
| 932 |
+
ds_name = LEADERBOARD_DATASETS[ds_key]["name"]
|
| 933 |
+
if ds_key in ds_results:
|
| 934 |
+
per_ds_row[ds_name] = round(ds_results[ds_key]["avg_fertility"], 2)
|
| 935 |
+
else:
|
| 936 |
+
per_ds_row[ds_name] = "-"
|
| 937 |
+
per_dataset_data.append(per_ds_row)
|
| 938 |
+
|
| 939 |
+
# Sort by score
|
| 940 |
+
leaderboard_data.sort(key=lambda x: x["score"], reverse=True)
|
| 941 |
+
|
| 942 |
+
# Create HTML tables
|
| 943 |
+
leaderboard_html = generate_leaderboard_html(leaderboard_data)
|
| 944 |
+
per_dataset_html = generate_per_dataset_html(per_dataset_data, selected_datasets)
|
| 945 |
+
|
| 946 |
+
status_lines.append(f"\nβ
**Evaluation Complete!** Evaluated {len(results)} tokenizers on {len(loaded_datasets)} datasets.")
|
| 947 |
+
|
| 948 |
+
return leaderboard_html, per_dataset_html, "\n".join(status_lines)
|
| 949 |
+
|
| 950 |
+
def generate_leaderboard_html(data: List[Dict]) -> str:
|
| 951 |
+
"""Generate HTML for main leaderboard"""
|
| 952 |
+
|
| 953 |
+
if not data:
|
| 954 |
+
return "<p>No results to display</p>"
|
| 955 |
+
|
| 956 |
+
html = """
|
| 957 |
+
<style>
|
| 958 |
+
.leaderboard-table {
|
| 959 |
+
width: 100%;
|
| 960 |
+
border-collapse: collapse;
|
| 961 |
+
font-family: system-ui, -apple-system, sans-serif;
|
| 962 |
+
margin: 20px 0;
|
| 963 |
+
}
|
| 964 |
+
.leaderboard-table th {
|
| 965 |
+
background: linear-gradient(135deg, #1a5f2a 0%, #2d8f4e 100%);
|
| 966 |
+
color: white;
|
| 967 |
+
padding: 12px 8px;
|
| 968 |
+
text-align: left;
|
| 969 |
+
font-weight: 600;
|
| 970 |
+
}
|
| 971 |
+
.leaderboard-table td {
|
| 972 |
+
padding: 10px 8px;
|
| 973 |
+
border-bottom: 1px solid #e0e0e0;
|
| 974 |
+
}
|
| 975 |
+
.leaderboard-table tr:nth-child(even) {
|
| 976 |
+
background-color: #f8f9fa;
|
| 977 |
+
}
|
| 978 |
+
.leaderboard-table tr:hover {
|
| 979 |
+
background-color: #e8f5e9;
|
| 980 |
+
}
|
| 981 |
+
.rank-1 { background: linear-gradient(90deg, #ffd700 0%, #fff8dc 100%) !important; }
|
| 982 |
+
.rank-2 { background: linear-gradient(90deg, #c0c0c0 0%, #f5f5f5 100%) !important; }
|
| 983 |
+
.rank-3 { background: linear-gradient(90deg, #cd7f32 0%, #ffe4c4 100%) !important; }
|
| 984 |
+
.score-badge {
|
| 985 |
+
background: #2d8f4e;
|
| 986 |
+
color: white;
|
| 987 |
+
padding: 4px 8px;
|
| 988 |
+
border-radius: 12px;
|
| 989 |
+
font-weight: bold;
|
| 990 |
+
}
|
| 991 |
+
.type-badge {
|
| 992 |
+
background: #e3f2fd;
|
| 993 |
+
color: #1565c0;
|
| 994 |
+
padding: 2px 6px;
|
| 995 |
+
border-radius: 4px;
|
| 996 |
+
font-size: 0.85em;
|
| 997 |
+
}
|
| 998 |
+
.metric-good { color: #2e7d32; font-weight: 600; }
|
| 999 |
+
.metric-bad { color: #c62828; }
|
| 1000 |
+
</style>
|
| 1001 |
+
|
| 1002 |
+
<table class="leaderboard-table">
|
| 1003 |
+
<thead>
|
| 1004 |
+
<tr>
|
| 1005 |
+
<th>Rank</th>
|
| 1006 |
+
<th>Tokenizer</th>
|
| 1007 |
+
<th>Type</th>
|
| 1008 |
+
<th>Organization</th>
|
| 1009 |
+
<th>Score β</th>
|
| 1010 |
+
<th>Fertility β</th>
|
| 1011 |
+
<th>Compression β</th>
|
| 1012 |
+
<th>UNK Rate β</th>
|
| 1013 |
+
<th>Datasets</th>
|
| 1014 |
+
</tr>
|
| 1015 |
+
</thead>
|
| 1016 |
+
<tbody>
|
| 1017 |
+
"""
|
| 1018 |
+
|
| 1019 |
+
for i, entry in enumerate(data):
|
| 1020 |
+
rank = i + 1
|
| 1021 |
+
rank_class = f"rank-{rank}" if rank <= 3 else ""
|
| 1022 |
+
|
| 1023 |
+
# Color coding for metrics
|
| 1024 |
+
fert_class = "metric-good" if entry["fertility"] < 2.0 else "metric-bad" if entry["fertility"] > 3.0 else ""
|
| 1025 |
+
comp_class = "metric-good" if entry["compression"] > 3.5 else ""
|
| 1026 |
+
unk_class = "metric-good" if entry["unk_ratio"] < 0.01 else "metric-bad" if entry["unk_ratio"] > 0.05 else ""
|
| 1027 |
+
|
| 1028 |
+
html += f"""
|
| 1029 |
+
<tr class="{rank_class}">
|
| 1030 |
+
<td><strong>#{rank}</strong></td>
|
| 1031 |
+
<td><strong>{entry["name"]}</strong></td>
|
| 1032 |
+
<td><span class="type-badge">{entry["type"]}</span></td>
|
| 1033 |
+
<td>{entry["org"]}</td>
|
| 1034 |
+
<td><span class="score-badge">{entry["score"]}</span></td>
|
| 1035 |
+
<td class="{fert_class}">{entry["fertility"]:.3f}</td>
|
| 1036 |
+
<td class="{comp_class}">{entry["compression"]:.2f}</td>
|
| 1037 |
+
<td class="{unk_class}">{entry["unk_ratio"]:.2%}</td>
|
| 1038 |
+
<td>{entry["num_datasets"]}</td>
|
| 1039 |
+
</tr>
|
| 1040 |
+
"""
|
| 1041 |
+
|
| 1042 |
+
html += """
|
| 1043 |
+
</tbody>
|
| 1044 |
+
</table>
|
| 1045 |
+
|
| 1046 |
+
<div style="margin-top: 15px; padding: 10px; background: #f5f5f5; border-radius: 8px; font-size: 0.9em;">
|
| 1047 |
+
<strong>π Metric Guide:</strong><br>
|
| 1048 |
+
β’ <strong>Score:</strong> Overall ranking (0-100, higher = better)<br>
|
| 1049 |
+
β’ <strong>Fertility:</strong> Tokens per word (lower = better, 1.0 ideal for Arabic)<br>
|
| 1050 |
+
β’ <strong>Compression:</strong> Bytes per token (higher = more efficient)<br>
|
| 1051 |
+
β’ <strong>UNK Rate:</strong> Unknown token percentage (lower = better)
|
| 1052 |
+
</div>
|
| 1053 |
+
"""
|
| 1054 |
+
|
| 1055 |
+
return html
|
| 1056 |
+
|
| 1057 |
+
def generate_per_dataset_html(data: List[Dict], dataset_keys: List[str]) -> str:
|
| 1058 |
+
"""Generate HTML for per-dataset fertility table"""
|
| 1059 |
+
|
| 1060 |
+
if not data:
|
| 1061 |
+
return "<p>No per-dataset results</p>"
|
| 1062 |
+
|
| 1063 |
+
ds_names = [LEADERBOARD_DATASETS[k]["name"] for k in dataset_keys]
|
| 1064 |
+
|
| 1065 |
+
html = """
|
| 1066 |
+
<style>
|
| 1067 |
+
.dataset-table {
|
| 1068 |
+
width: 100%;
|
| 1069 |
+
border-collapse: collapse;
|
| 1070 |
+
font-family: system-ui, -apple-system, sans-serif;
|
| 1071 |
+
margin: 20px 0;
|
| 1072 |
+
font-size: 0.9em;
|
| 1073 |
+
}
|
| 1074 |
+
.dataset-table th {
|
| 1075 |
+
background: #37474f;
|
| 1076 |
+
color: white;
|
| 1077 |
+
padding: 10px 6px;
|
| 1078 |
+
text-align: center;
|
| 1079 |
+
}
|
| 1080 |
+
.dataset-table th:first-child {
|
| 1081 |
+
text-align: left;
|
| 1082 |
+
}
|
| 1083 |
+
.dataset-table td {
|
| 1084 |
+
padding: 8px 6px;
|
| 1085 |
+
text-align: center;
|
| 1086 |
+
border-bottom: 1px solid #e0e0e0;
|
| 1087 |
+
}
|
| 1088 |
+
.dataset-table td:first-child {
|
| 1089 |
+
text-align: left;
|
| 1090 |
+
font-weight: 500;
|
| 1091 |
+
}
|
| 1092 |
+
.dataset-table tr:nth-child(even) {
|
| 1093 |
+
background-color: #fafafa;
|
| 1094 |
+
}
|
| 1095 |
+
.fert-excellent { background: #c8e6c9; color: #1b5e20; font-weight: 600; }
|
| 1096 |
+
.fert-good { background: #fff9c4; color: #f57f17; }
|
| 1097 |
+
.fert-poor { background: #ffcdd2; color: #b71c1c; }
|
| 1098 |
+
</style>
|
| 1099 |
+
|
| 1100 |
+
<h4>π Fertility per Dataset (tokens/word - lower is better)</h4>
|
| 1101 |
+
<table class="dataset-table">
|
| 1102 |
+
<thead>
|
| 1103 |
+
<tr>
|
| 1104 |
+
<th>Tokenizer</th>
|
| 1105 |
+
"""
|
| 1106 |
+
|
| 1107 |
+
for ds_name in ds_names:
|
| 1108 |
+
html += f"<th>{ds_name}</th>"
|
| 1109 |
+
|
| 1110 |
+
html += """
|
| 1111 |
+
</tr>
|
| 1112 |
+
</thead>
|
| 1113 |
+
<tbody>
|
| 1114 |
+
"""
|
| 1115 |
+
|
| 1116 |
+
for row in data:
|
| 1117 |
+
html += f"<tr><td>{row['Tokenizer']}</td>"
|
| 1118 |
+
for ds_name in ds_names:
|
| 1119 |
+
val = row.get(ds_name, "-")
|
| 1120 |
+
if val != "-":
|
| 1121 |
+
if val < 1.8:
|
| 1122 |
+
cls = "fert-excellent"
|
| 1123 |
+
elif val < 2.5:
|
| 1124 |
+
cls = "fert-good"
|
| 1125 |
+
else:
|
| 1126 |
+
cls = "fert-poor"
|
| 1127 |
+
html += f'<td class="{cls}">{val}</td>'
|
| 1128 |
+
else:
|
| 1129 |
+
html += '<td>-</td>'
|
| 1130 |
+
html += "</tr>"
|
| 1131 |
+
|
| 1132 |
+
html += """
|
| 1133 |
+
</tbody>
|
| 1134 |
+
</table>
|
| 1135 |
+
"""
|
| 1136 |
+
|
| 1137 |
+
return html
|
| 1138 |
+
|
| 1139 |
# ============================================================================
|
| 1140 |
# UI GENERATION FUNCTIONS
|
| 1141 |
# ============================================================================
|
|
|
|
| 1143 |
def generate_token_visualization(tokens: List[str], token_ids: List[int]) -> str:
|
| 1144 |
"""Generate beautiful HTML visualization of tokens"""
|
| 1145 |
|
|
|
|
| 1146 |
colors = [
|
| 1147 |
+
('#1a1a2e', '#eaeaea'),
|
| 1148 |
('#16213e', '#f0f0f0'),
|
| 1149 |
('#0f3460', '#ffffff'),
|
| 1150 |
('#533483', '#f5f5f5'),
|
|
|
|
| 1157 |
html_parts = []
|
| 1158 |
for i, (token, tid) in enumerate(zip(tokens, token_ids)):
|
| 1159 |
bg, fg = colors[i % len(colors)]
|
|
|
|
| 1160 |
display_token = token.replace('<', '<').replace('>', '>')
|
|
|
|
|
|
|
| 1161 |
is_arabic = any(is_arabic_char(c) for c in token)
|
| 1162 |
direction = 'rtl' if is_arabic else 'ltr'
|
| 1163 |
|
|
|
|
| 1181 |
def generate_metrics_card(metrics: TokenizationMetrics, info: TokenizerInfo) -> str:
|
| 1182 |
"""Generate metrics visualization card"""
|
| 1183 |
|
|
|
|
| 1184 |
fertility_quality = "excellent" if metrics.fertility < 1.5 else "good" if metrics.fertility < 2.5 else "poor"
|
| 1185 |
strr_quality = "excellent" if metrics.single_token_retention_rate > 0.5 else "good" if metrics.single_token_retention_rate > 0.3 else "poor"
|
| 1186 |
compression_quality = "excellent" if metrics.compression_ratio > 4 else "good" if metrics.compression_ratio > 2.5 else "poor"
|
|
|
|
| 1210 |
<div class="metric-card {strr_quality}">
|
| 1211 |
<div class="metric-icon">β¨</div>
|
| 1212 |
<div class="metric-value">{metrics.single_token_retention_rate:.1%}</div>
|
| 1213 |
+
<div class="metric-label">STRR (Single Token Retention)</div>
|
| 1214 |
<div class="metric-hint">Higher is better</div>
|
| 1215 |
</div>
|
| 1216 |
|
| 1217 |
<div class="metric-card">
|
| 1218 |
+
<div class="metric-icon">π€</div>
|
| 1219 |
<div class="metric-value">{metrics.char_per_token:.2f}</div>
|
| 1220 |
<div class="metric-label">Characters/Token</div>
|
| 1221 |
</div>
|
| 1222 |
|
| 1223 |
+
<div class="metric-card {'excellent' if metrics.oov_percentage == 0 else 'poor' if metrics.oov_percentage > 5 else 'good'}">
|
| 1224 |
+
<div class="metric-icon">β</div>
|
| 1225 |
+
<div class="metric-value">{metrics.oov_percentage:.1f}%</div>
|
| 1226 |
+
<div class="metric-label">OOV Rate</div>
|
| 1227 |
+
<div class="metric-hint">Lower is better (0% ideal)</div>
|
| 1228 |
</div>
|
| 1229 |
|
| 1230 |
+
<div class="metric-card">
|
| 1231 |
+
<div class="metric-icon">π</div>
|
| 1232 |
<div class="metric-value">{metrics.arabic_fertility:.3f}</div>
|
| 1233 |
<div class="metric-label">Arabic Fertility</div>
|
|
|
|
| 1234 |
</div>
|
| 1235 |
|
| 1236 |
<div class="metric-card">
|
| 1237 |
+
<div class="metric-icon">β‘</div>
|
| 1238 |
+
<div class="metric-value">{metrics.tokenization_time_ms:.2f}ms</div>
|
| 1239 |
+
<div class="metric-label">Processing Time</div>
|
|
|
|
| 1240 |
</div>
|
| 1241 |
</div>
|
| 1242 |
'''
|
|
|
|
| 1244 |
def generate_tokenizer_info_card(info: TokenizerInfo) -> str:
|
| 1245 |
"""Generate tokenizer information card"""
|
| 1246 |
|
| 1247 |
+
dialect_badges = ''.join([f'<span class="badge dialect">{d}</span>' for d in info.dialect_support])
|
| 1248 |
+
feature_badges = ''.join([f'<span class="badge feature">{f}</span>' for f in info.special_features])
|
|
|
|
|
|
|
| 1249 |
|
| 1250 |
+
support_class = "native" if info.arabic_support == "Native" else "supported" if info.arabic_support == "Supported" else "limited"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1251 |
|
| 1252 |
return f'''
|
| 1253 |
+
<div class="info-card">
|
| 1254 |
+
<div class="info-header">
|
| 1255 |
<h3>{info.name}</h3>
|
| 1256 |
<span class="org-badge">{info.organization}</span>
|
| 1257 |
</div>
|
| 1258 |
+
|
| 1259 |
+
<p class="description">{info.description}</p>
|
| 1260 |
+
|
| 1261 |
+
<div class="info-grid">
|
| 1262 |
+
<div class="info-item">
|
| 1263 |
+
<span class="info-label">Type:</span>
|
| 1264 |
+
<span class="info-value">{info.type.value}</span>
|
| 1265 |
</div>
|
| 1266 |
+
<div class="info-item">
|
| 1267 |
+
<span class="info-label">Algorithm:</span>
|
| 1268 |
+
<span class="info-value">{info.algorithm.value}</span>
|
| 1269 |
</div>
|
| 1270 |
+
<div class="info-item">
|
| 1271 |
+
<span class="info-label">Vocab Size:</span>
|
| 1272 |
+
<span class="info-value">{info.vocab_size:,}</span>
|
| 1273 |
</div>
|
| 1274 |
+
<div class="info-item">
|
| 1275 |
+
<span class="info-label">Arabic Support:</span>
|
| 1276 |
+
<span class="info-value support-{support_class}">{info.arabic_support}</span>
|
| 1277 |
</div>
|
| 1278 |
</div>
|
| 1279 |
+
|
| 1280 |
+
<div class="badge-container">
|
| 1281 |
<div class="badge-group">
|
| 1282 |
<span class="badge-label">Dialects:</span>
|
| 1283 |
{dialect_badges}
|
|
|
|
| 1290 |
</div>
|
| 1291 |
'''
|
| 1292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1293 |
def analyze_single_tokenizer(tokenizer_choice: str, text: str) -> Tuple[str, str, str, str]:
|
| 1294 |
+
"""Analyze a single tokenizer"""
|
| 1295 |
|
| 1296 |
+
if not text or not text.strip():
|
| 1297 |
return (
|
| 1298 |
+
'<div class="warning">β οΈ Please enter some text to analyze</div>',
|
| 1299 |
+
'', '', ''
|
| 1300 |
+
)
|
| 1301 |
+
|
| 1302 |
+
if not tokenizer_choice:
|
| 1303 |
+
return (
|
| 1304 |
+
'<div class="warning">β οΈ Please select a tokenizer</div>',
|
| 1305 |
+
'', '', ''
|
| 1306 |
)
|
| 1307 |
|
| 1308 |
model_id = tokenizer_manager.get_model_id_from_choice(tokenizer_choice)
|
| 1309 |
+
tokenizer_info = tokenizer_manager.get_available_tokenizers().get(model_id)
|
| 1310 |
+
|
| 1311 |
+
if not tokenizer_info:
|
| 1312 |
+
return (
|
| 1313 |
+
'<div class="error-card"><h4>Error</h4><p>Tokenizer not found</p></div>',
|
| 1314 |
+
'', '', ''
|
| 1315 |
+
)
|
| 1316 |
|
| 1317 |
try:
|
| 1318 |
+
metrics = analyze_tokenization(text, model_id, tokenizer_info)
|
| 1319 |
|
| 1320 |
+
info_html = generate_tokenizer_info_card(tokenizer_info)
|
| 1321 |
+
metrics_html = generate_metrics_card(metrics, tokenizer_info)
|
|
|
|
| 1322 |
tokens_html = generate_token_visualization(metrics.tokens, metrics.token_ids)
|
| 1323 |
|
|
|
|
| 1324 |
decoded_html = f'''
|
| 1325 |
<div class="decoded-section">
|
| 1326 |
<h4>Decoded Output</h4>
|
| 1327 |
<div class="decoded-text" dir="auto">{metrics.decoded_text}</div>
|
| 1328 |
<div class="decoded-meta">
|
| 1329 |
+
Diacritics preserved: {'β
Yes' if metrics.diacritic_preservation else 'β No'}
|
| 1330 |
</div>
|
| 1331 |
</div>
|
| 1332 |
'''
|
|
|
|
| 1334 |
return info_html, metrics_html, tokens_html, decoded_html
|
| 1335 |
|
| 1336 |
except Exception as e:
|
| 1337 |
+
return (
|
| 1338 |
+
f'<div class="error-card"><h4>Error</h4><p>{str(e)}</p></div>',
|
| 1339 |
+
'', '', ''
|
| 1340 |
+
)
|
|
|
|
|
|
|
|
|
|
| 1341 |
|
| 1342 |
def compare_tokenizers(tokenizer_choices: List[str], text: str) -> str:
|
| 1343 |
+
"""Compare multiple tokenizers"""
|
| 1344 |
|
| 1345 |
+
if not text or not text.strip():
|
| 1346 |
+
return '<div class="warning">β οΈ Please enter some text to analyze</div>'
|
| 1347 |
|
| 1348 |
if not tokenizer_choices or len(tokenizer_choices) < 2:
|
| 1349 |
+
return '<div class="warning">β οΈ Please select at least 2 tokenizers to compare</div>'
|
| 1350 |
|
| 1351 |
results = []
|
| 1352 |
|
| 1353 |
for choice in tokenizer_choices:
|
| 1354 |
model_id = tokenizer_manager.get_model_id_from_choice(choice)
|
| 1355 |
+
tokenizer_info = tokenizer_manager.get_available_tokenizers().get(model_id)
|
| 1356 |
|
| 1357 |
+
if tokenizer_info:
|
| 1358 |
+
try:
|
| 1359 |
+
metrics = analyze_tokenization(text, model_id, tokenizer_info)
|
| 1360 |
+
results.append({
|
| 1361 |
+
'name': tokenizer_info.name,
|
| 1362 |
+
'org': tokenizer_info.organization,
|
| 1363 |
+
'type': tokenizer_info.type.value,
|
| 1364 |
+
'metrics': metrics
|
| 1365 |
+
})
|
| 1366 |
+
except Exception as e:
|
| 1367 |
+
results.append({
|
| 1368 |
+
'name': tokenizer_info.name,
|
| 1369 |
+
'org': tokenizer_info.organization,
|
| 1370 |
+
'type': tokenizer_info.type.value,
|
| 1371 |
+
'error': str(e)
|
| 1372 |
+
})
|
| 1373 |
|
| 1374 |
+
# Sort by fertility (lower is better)
|
| 1375 |
+
results.sort(key=lambda x: x.get('metrics', TokenizationMetrics(
|
| 1376 |
+
total_tokens=0, total_words=0, total_characters=0, total_bytes=0,
|
| 1377 |
+
fertility=999, compression_ratio=0, char_per_token=0,
|
| 1378 |
+
oov_count=0, oov_percentage=0, single_token_words=0,
|
| 1379 |
+
single_token_retention_rate=0, avg_subwords_per_word=0,
|
| 1380 |
+
max_subwords_per_word=0, continued_words_ratio=0,
|
| 1381 |
+
arabic_char_count=0, arabic_token_count=0, arabic_fertility=0,
|
| 1382 |
+
diacritic_preservation=False, tokenization_time_ms=0
|
| 1383 |
+
)).fertility)
|
| 1384 |
|
| 1385 |
# Generate comparison table
|
| 1386 |
+
html = '''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1387 |
<div class="comparison-container">
|
|
|
|
|
|
|
| 1388 |
<table class="comparison-table">
|
| 1389 |
<thead>
|
| 1390 |
<tr>
|
| 1391 |
+
<th>Rank</th>
|
| 1392 |
<th>Tokenizer</th>
|
| 1393 |
+
<th>Type</th>
|
| 1394 |
<th>Tokens</th>
|
| 1395 |
<th>Fertility β</th>
|
| 1396 |
+
<th>Compression β</th>
|
| 1397 |
+
<th>STRR β</th>
|
|
|
|
| 1398 |
<th>OOV %</th>
|
|
|
|
| 1399 |
</tr>
|
| 1400 |
</thead>
|
| 1401 |
<tbody>
|
| 1402 |
+
'''
|
| 1403 |
+
|
| 1404 |
+
for i, result in enumerate(results):
|
| 1405 |
+
rank = i + 1
|
| 1406 |
+
rank_class = 'rank-1' if rank == 1 else 'rank-2' if rank == 2 else 'rank-3' if rank == 3 else ''
|
| 1407 |
+
|
| 1408 |
+
if 'error' in result:
|
| 1409 |
+
html += f'''
|
| 1410 |
+
<tr class="{rank_class}">
|
| 1411 |
+
<td>#{rank}</td>
|
| 1412 |
+
<td><strong>{result['name']}</strong><br><small>{result['org']}</small></td>
|
| 1413 |
+
<td>{result['type']}</td>
|
| 1414 |
+
<td colspan="5" class="error">Error: {result['error']}</td>
|
| 1415 |
+
</tr>
|
| 1416 |
+
'''
|
| 1417 |
+
else:
|
| 1418 |
+
m = result['metrics']
|
| 1419 |
+
fertility_class = 'excellent' if m.fertility < 1.5 else 'good' if m.fertility < 2.5 else 'poor'
|
| 1420 |
+
|
| 1421 |
+
html += f'''
|
| 1422 |
+
<tr class="{rank_class}">
|
| 1423 |
+
<td><strong>#{rank}</strong></td>
|
| 1424 |
+
<td><strong>{result['name']}</strong><br><small>{result['org']}</small></td>
|
| 1425 |
+
<td>{result['type']}</td>
|
| 1426 |
+
<td>{m.total_tokens}</td>
|
| 1427 |
+
<td class="{fertility_class}">{m.fertility:.3f}</td>
|
| 1428 |
+
<td>{m.compression_ratio:.2f}</td>
|
| 1429 |
+
<td>{m.single_token_retention_rate:.1%}</td>
|
| 1430 |
+
<td>{m.oov_percentage:.1f}%</td>
|
| 1431 |
+
</tr>
|
| 1432 |
+
'''
|
| 1433 |
+
|
| 1434 |
+
html += '''
|
| 1435 |
</tbody>
|
| 1436 |
</table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1437 |
</div>
|
| 1438 |
'''
|
| 1439 |
+
|
| 1440 |
+
return html
|
| 1441 |
|
| 1442 |
# ============================================================================
|
| 1443 |
+
# CUSTOM CSS
|
| 1444 |
# ============================================================================
|
| 1445 |
|
| 1446 |
CUSTOM_CSS = """
|
| 1447 |
+
/* ===== ROOT VARIABLES ===== */
|
| 1448 |
:root {
|
| 1449 |
+
--primary: #1a5f2a;
|
| 1450 |
+
--primary-light: #2d8f4e;
|
| 1451 |
+
--secondary: #4a90d9;
|
| 1452 |
+
--accent: #f59e0b;
|
| 1453 |
+
--success: #10b981;
|
|
|
|
| 1454 |
--warning: #f57c00;
|
| 1455 |
--error: #c62828;
|
| 1456 |
+
--bg-primary: #0f1419;
|
| 1457 |
+
--bg-secondary: #1c2128;
|
| 1458 |
+
--bg-card: #22272e;
|
| 1459 |
+
--text-primary: #e6edf3;
|
| 1460 |
+
--text-secondary: #8b949e;
|
| 1461 |
+
--border: #30363d;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1462 |
}
|
| 1463 |
|
| 1464 |
+
/* ===== HEADER ===== */
|
| 1465 |
.header-section {
|
| 1466 |
text-align: center;
|
| 1467 |
+
padding: 2rem 1rem;
|
| 1468 |
+
background: linear-gradient(135deg, var(--primary) 0%, var(--primary-light) 100%);
|
| 1469 |
border-radius: 16px;
|
| 1470 |
+
margin-bottom: 1.5rem;
|
| 1471 |
}
|
| 1472 |
|
| 1473 |
.header-section h1 {
|
| 1474 |
font-size: 2.5rem;
|
|
|
|
| 1475 |
color: white;
|
| 1476 |
margin-bottom: 0.5rem;
|
|
|
|
| 1477 |
}
|
| 1478 |
|
| 1479 |
.header-section p {
|
|
|
|
| 1481 |
font-size: 1.1rem;
|
| 1482 |
}
|
| 1483 |
|
| 1484 |
+
/* ===== INFO CARD ===== */
|
| 1485 |
+
.info-card {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1486 |
background: var(--bg-card);
|
| 1487 |
border-radius: 12px;
|
| 1488 |
+
padding: 1.5rem;
|
| 1489 |
border: 1px solid var(--border);
|
|
|
|
| 1490 |
}
|
| 1491 |
|
| 1492 |
+
.info-header {
|
| 1493 |
+
display: flex;
|
| 1494 |
+
justify-content: space-between;
|
| 1495 |
align-items: center;
|
| 1496 |
+
margin-bottom: 1rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1497 |
}
|
| 1498 |
|
| 1499 |
+
.info-header h3 {
|
| 1500 |
+
color: var(--text-primary);
|
| 1501 |
+
margin: 0;
|
| 1502 |
}
|
| 1503 |
|
| 1504 |
+
.org-badge {
|
| 1505 |
+
background: var(--primary);
|
| 1506 |
+
color: white;
|
| 1507 |
+
padding: 0.25rem 0.75rem;
|
| 1508 |
+
border-radius: 20px;
|
| 1509 |
+
font-size: 0.85rem;
|
| 1510 |
+
}
|
| 1511 |
+
|
| 1512 |
+
.description {
|
| 1513 |
+
color: var(--text-secondary);
|
| 1514 |
+
line-height: 1.6;
|
| 1515 |
+
}
|
| 1516 |
+
|
| 1517 |
+
.info-grid {
|
| 1518 |
+
display: grid;
|
| 1519 |
+
grid-template-columns: repeat(2, 1fr);
|
| 1520 |
+
gap: 1rem;
|
| 1521 |
+
margin: 1rem 0;
|
| 1522 |
+
}
|
| 1523 |
+
|
| 1524 |
+
.info-item {
|
| 1525 |
+
display: flex;
|
| 1526 |
+
flex-direction: column;
|
| 1527 |
+
}
|
| 1528 |
+
|
| 1529 |
+
.info-label {
|
| 1530 |
+
color: var(--text-secondary);
|
| 1531 |
+
font-size: 0.85rem;
|
| 1532 |
+
}
|
| 1533 |
+
|
| 1534 |
+
.info-value {
|
| 1535 |
+
color: var(--text-primary);
|
| 1536 |
+
font-weight: 600;
|
| 1537 |
+
}
|
| 1538 |
+
|
| 1539 |
+
.support-native { color: var(--success); }
|
| 1540 |
+
.support-supported { color: var(--secondary); }
|
| 1541 |
+
.support-limited { color: var(--warning); }
|
| 1542 |
+
|
| 1543 |
+
/* ===== BADGES ===== */
|
| 1544 |
+
.badge-container {
|
| 1545 |
+
margin-top: 1rem;
|
| 1546 |
+
}
|
| 1547 |
+
|
| 1548 |
+
.badge-group {
|
| 1549 |
+
margin-bottom: 0.5rem;
|
| 1550 |
+
}
|
| 1551 |
+
|
| 1552 |
+
.badge-label {
|
| 1553 |
+
color: var(--text-secondary);
|
| 1554 |
+
font-size: 0.85rem;
|
| 1555 |
+
margin-right: 0.5rem;
|
| 1556 |
+
}
|
| 1557 |
+
|
| 1558 |
+
.badge {
|
| 1559 |
+
display: inline-block;
|
| 1560 |
+
padding: 0.2rem 0.5rem;
|
| 1561 |
+
border-radius: 4px;
|
| 1562 |
+
font-size: 0.75rem;
|
| 1563 |
+
margin-right: 0.25rem;
|
| 1564 |
+
margin-bottom: 0.25rem;
|
| 1565 |
+
}
|
| 1566 |
+
|
| 1567 |
+
.badge.dialect {
|
| 1568 |
+
background: rgba(74, 144, 217, 0.2);
|
| 1569 |
+
color: var(--secondary);
|
| 1570 |
+
}
|
| 1571 |
+
|
| 1572 |
+
.badge.feature {
|
| 1573 |
+
background: rgba(245, 158, 11, 0.2);
|
| 1574 |
+
color: var(--accent);
|
| 1575 |
}
|
| 1576 |
|
| 1577 |
/* ===== METRICS GRID ===== */
|
| 1578 |
.metrics-grid {
|
| 1579 |
display: grid;
|
| 1580 |
+
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
|
| 1581 |
gap: 1rem;
|
| 1582 |
+
margin: 1rem 0;
|
| 1583 |
}
|
| 1584 |
|
| 1585 |
.metric-card {
|
| 1586 |
background: var(--bg-card);
|
|
|
|
| 1587 |
border-radius: 12px;
|
| 1588 |
+
padding: 1rem;
|
| 1589 |
text-align: center;
|
| 1590 |
+
border: 1px solid var(--border);
|
| 1591 |
+
transition: transform 0.2s;
|
| 1592 |
}
|
| 1593 |
|
| 1594 |
.metric-card:hover {
|
| 1595 |
+
transform: translateY(-2px);
|
|
|
|
| 1596 |
}
|
| 1597 |
|
| 1598 |
.metric-card.excellent {
|
| 1599 |
border-color: var(--success);
|
| 1600 |
+
background: linear-gradient(to bottom, rgba(16, 185, 129, 0.1), transparent);
|
| 1601 |
}
|
| 1602 |
|
| 1603 |
.metric-card.good {
|
| 1604 |
+
border-color: var(--secondary);
|
| 1605 |
+
background: linear-gradient(to bottom, rgba(74, 144, 217, 0.1), transparent);
|
| 1606 |
}
|
| 1607 |
|
| 1608 |
.metric-card.poor {
|
| 1609 |
+
border-color: var(--error);
|
| 1610 |
+
background: linear-gradient(to bottom, rgba(198, 40, 40, 0.1), transparent);
|
| 1611 |
}
|
| 1612 |
|
| 1613 |
.metric-card.primary {
|
| 1614 |
+
border-color: var(--primary);
|
| 1615 |
+
background: linear-gradient(to bottom, rgba(26, 95, 42, 0.1), transparent);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1616 |
}
|
| 1617 |
|
| 1618 |
.metric-icon {
|
|
|
|
| 1621 |
}
|
| 1622 |
|
| 1623 |
.metric-value {
|
| 1624 |
+
font-size: 1.5rem;
|
| 1625 |
font-weight: 700;
|
| 1626 |
color: var(--text-primary);
|
|
|
|
| 1627 |
}
|
| 1628 |
|
| 1629 |
.metric-label {
|
| 1630 |
+
font-size: 0.8rem;
|
| 1631 |
color: var(--text-secondary);
|
| 1632 |
+
margin-top: 0.25rem;
|
| 1633 |
}
|
| 1634 |
|
| 1635 |
.metric-hint {
|
|
|
|
| 1638 |
opacity: 0.7;
|
| 1639 |
}
|
| 1640 |
|
| 1641 |
+
/* ===== TOKEN VISUALIZATION ===== */
|
| 1642 |
+
.token-container {
|
| 1643 |
+
display: flex;
|
| 1644 |
+
flex-wrap: wrap;
|
| 1645 |
+
gap: 0.5rem;
|
| 1646 |
+
padding: 1rem;
|
| 1647 |
+
background: var(--bg-secondary);
|
| 1648 |
border-radius: 12px;
|
| 1649 |
+
direction: rtl;
|
| 1650 |
}
|
| 1651 |
|
| 1652 |
+
.token {
|
| 1653 |
+
display: inline-flex;
|
| 1654 |
+
flex-direction: column;
|
| 1655 |
align-items: center;
|
| 1656 |
+
padding: 0.5rem 0.75rem;
|
| 1657 |
+
border-radius: 8px;
|
| 1658 |
+
font-family: 'IBM Plex Sans Arabic', monospace;
|
| 1659 |
+
font-size: 1rem;
|
| 1660 |
+
transition: transform 0.2s;
|
| 1661 |
+
cursor: default;
|
| 1662 |
}
|
| 1663 |
|
| 1664 |
+
.token:hover {
|
| 1665 |
+
transform: scale(1.05);
|
|
|
|
|
|
|
| 1666 |
}
|
| 1667 |
|
| 1668 |
+
.token-id {
|
| 1669 |
+
font-size: 0.65rem;
|
| 1670 |
+
opacity: 0.7;
|
| 1671 |
+
margin-top: 0.25rem;
|
|
|
|
|
|
|
| 1672 |
}
|
| 1673 |
|
| 1674 |
+
/* ===== DECODED SECTION ===== */
|
| 1675 |
+
.decoded-section {
|
| 1676 |
+
background: var(--bg-card);
|
| 1677 |
+
border-radius: 12px;
|
| 1678 |
+
padding: 1.5rem;
|
| 1679 |
+
border: 1px solid var(--border);
|
| 1680 |
}
|
| 1681 |
|
| 1682 |
+
.decoded-section h4 {
|
| 1683 |
+
color: var(--text-primary);
|
|
|
|
|
|
|
| 1684 |
margin-bottom: 1rem;
|
| 1685 |
}
|
| 1686 |
|
| 1687 |
+
.decoded-text {
|
| 1688 |
+
font-family: 'IBM Plex Sans Arabic', serif;
|
| 1689 |
+
font-size: 1.1rem;
|
| 1690 |
+
line-height: 1.8;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1691 |
color: var(--text-primary);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1692 |
}
|
| 1693 |
|
| 1694 |
+
.decoded-meta {
|
| 1695 |
+
margin-top: 1rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1696 |
font-size: 0.85rem;
|
| 1697 |
+
color: var(--text-secondary);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1698 |
}
|
| 1699 |
|
| 1700 |
/* ===== COMPARISON TABLE ===== */
|
| 1701 |
.comparison-container {
|
| 1702 |
+
overflow-x: auto;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1703 |
}
|
| 1704 |
|
| 1705 |
.comparison-table {
|
| 1706 |
width: 100%;
|
| 1707 |
border-collapse: collapse;
|
| 1708 |
+
margin: 1rem 0;
|
| 1709 |
}
|
| 1710 |
|
| 1711 |
.comparison-table th {
|
| 1712 |
+
background: var(--primary);
|
| 1713 |
+
color: white;
|
| 1714 |
+
padding: 0.75rem;
|
| 1715 |
text-align: left;
|
| 1716 |
+
font-weight: 600;
|
|
|
|
| 1717 |
}
|
| 1718 |
|
| 1719 |
.comparison-table td {
|
| 1720 |
+
padding: 0.75rem;
|
| 1721 |
border-bottom: 1px solid var(--border);
|
| 1722 |
color: var(--text-primary);
|
| 1723 |
}
|
| 1724 |
|
| 1725 |
+
.comparison-table tr:hover {
|
| 1726 |
+
background: rgba(74, 144, 217, 0.1);
|
| 1727 |
}
|
| 1728 |
|
| 1729 |
+
.comparison-table .rank-1 {
|
| 1730 |
+
background: linear-gradient(90deg, rgba(255, 215, 0, 0.2), transparent);
|
| 1731 |
}
|
| 1732 |
|
| 1733 |
+
.comparison-table .rank-2 {
|
| 1734 |
+
background: linear-gradient(90deg, rgba(192, 192, 192, 0.2), transparent);
|
| 1735 |
}
|
| 1736 |
|
| 1737 |
+
.comparison-table .rank-3 {
|
| 1738 |
+
background: linear-gradient(90deg, rgba(205, 127, 50, 0.2), transparent);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1739 |
}
|
| 1740 |
|
| 1741 |
+
.comparison-table .excellent {
|
| 1742 |
+
color: var(--success);
|
| 1743 |
+
font-weight: 600;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1744 |
}
|
| 1745 |
|
| 1746 |
+
.comparison-table .good {
|
| 1747 |
+
color: var(--secondary);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1748 |
}
|
| 1749 |
|
| 1750 |
+
.comparison-table .poor {
|
| 1751 |
+
color: var(--error);
|
|
|
|
|
|
|
| 1752 |
}
|
| 1753 |
|
| 1754 |
/* ===== UTILITY CLASSES ===== */
|
|
|
|
| 1803 |
|
| 1804 |
available_tokenizers = tokenizer_manager.get_tokenizer_choices()
|
| 1805 |
|
| 1806 |
+
# Group tokenizers by type
|
| 1807 |
+
arabic_specific = [t for t in available_tokenizers if any(x in t for x in ['AraBERT', 'CAMeL', 'MARBERT', 'ARBERT', 'Aranizer'])]
|
| 1808 |
+
arabic_llms = [t for t in available_tokenizers if any(x in t for x in ['Jais', 'AceGPT', 'ALLaM', 'SILMA', 'Fanar', 'Yehia', 'Atlas'])]
|
| 1809 |
multilingual = [t for t in available_tokenizers if t not in arabic_specific and t not in arabic_llms]
|
| 1810 |
|
| 1811 |
with gr.Blocks(css=CUSTOM_CSS, title="Arabic Tokenizer Arena Pro", theme=gr.themes.Base(
|
| 1812 |
+
primary_hue="green",
|
| 1813 |
+
secondary_hue="blue",
|
| 1814 |
neutral_hue="slate",
|
| 1815 |
font=["IBM Plex Sans Arabic", "system-ui", "sans-serif"]
|
| 1816 |
)) as demo:
|
|
|
|
| 1857 |
tokens_output = gr.HTML(label="Token Visualization")
|
| 1858 |
decoded_output = gr.HTML(label="Decoded Output")
|
| 1859 |
|
|
|
|
| 1860 |
sample_dropdown.change(
|
| 1861 |
lambda x: SAMPLE_TEXTS.get(x, ""),
|
| 1862 |
inputs=[sample_dropdown],
|
|
|
|
| 1909 |
outputs=[comparison_output]
|
| 1910 |
)
|
| 1911 |
|
| 1912 |
+
# ===== TAB 3: LEADERBOARD - Real HF Datasets =====
|
| 1913 |
+
with gr.TabItem("π Leaderboard", id="leaderboard"):
|
| 1914 |
+
gr.Markdown("""
|
| 1915 |
+
## π Arabic Tokenizer Leaderboard
|
| 1916 |
+
|
| 1917 |
+
Evaluate and rank tokenizers using **real Arabic datasets from HuggingFace**.
|
| 1918 |
+
Select datasets and tokenizers below, then click "Run Evaluation" to generate the leaderboard.
|
| 1919 |
+
|
| 1920 |
+
β οΈ **Note:** First run will download datasets from HuggingFace (may take a few minutes).
|
| 1921 |
+
""")
|
| 1922 |
+
|
| 1923 |
+
with gr.Row():
|
| 1924 |
+
with gr.Column(scale=1):
|
| 1925 |
+
gr.Markdown("### π Select Datasets")
|
| 1926 |
+
dataset_choices = gr.CheckboxGroup(
|
| 1927 |
+
choices=[(f"{v['name']} ({v['category']})", k) for k, v in LEADERBOARD_DATASETS.items()],
|
| 1928 |
+
value=["arabic_mmlu", "arsentd_lev", "athar", "arcd"],
|
| 1929 |
+
label="HuggingFace Datasets",
|
| 1930 |
+
info="Datasets will be downloaded from HuggingFace"
|
| 1931 |
+
)
|
| 1932 |
+
|
| 1933 |
+
with gr.Column(scale=1):
|
| 1934 |
+
gr.Markdown("### π§ Select Tokenizers")
|
| 1935 |
+
leaderboard_tokenizer_choices = gr.CheckboxGroup(
|
| 1936 |
+
choices=available_tokenizers,
|
| 1937 |
+
value=available_tokenizers[:8] if len(available_tokenizers) >= 8 else available_tokenizers,
|
| 1938 |
+
label="Tokenizers to Evaluate"
|
| 1939 |
+
)
|
| 1940 |
+
|
| 1941 |
+
run_leaderboard_btn = gr.Button("π Run Evaluation", variant="primary", size="lg")
|
| 1942 |
+
|
| 1943 |
+
status_output = gr.Markdown("Click 'Run Evaluation' to start...")
|
| 1944 |
+
|
| 1945 |
+
gr.Markdown("---")
|
| 1946 |
+
gr.Markdown("### π Leaderboard Results")
|
| 1947 |
+
|
| 1948 |
+
leaderboard_output = gr.HTML()
|
| 1949 |
+
|
| 1950 |
+
gr.Markdown("### π Per-Dataset Breakdown")
|
| 1951 |
+
per_dataset_output = gr.HTML()
|
| 1952 |
+
|
| 1953 |
+
run_leaderboard_btn.click(
|
| 1954 |
+
fn=run_leaderboard_evaluation,
|
| 1955 |
+
inputs=[dataset_choices, leaderboard_tokenizer_choices],
|
| 1956 |
+
outputs=[leaderboard_output, per_dataset_output, status_output]
|
| 1957 |
+
)
|
| 1958 |
+
|
| 1959 |
+
gr.Markdown("""
|
| 1960 |
+
---
|
| 1961 |
+
### π Dataset Sources (from HuggingFace)
|
| 1962 |
+
|
| 1963 |
+
| Dataset | HuggingFace ID | Category | Description |
|
| 1964 |
+
|---------|----------------|----------|-------------|
|
| 1965 |
+
| ArabicMMLU | `MBZUAI/ArabicMMLU` | Benchmark | Multi-task exam questions (14,575 MCQs) |
|
| 1966 |
+
| ArSenTD-LEV | `ramybaly/arsentd_lev` | Dialectal | Levantine tweets |
|
| 1967 |
+
| ATHAR | `mohamed-khalil/ATHAR` | Classical | 66K classical Arabic sentences |
|
| 1968 |
+
| ARCD | `arcd` | QA | Arabic Reading Comprehension |
|
| 1969 |
+
| Ashaar | `arbml/Ashaar_dataset` | Poetry | 2M+ Arabic poetry verses |
|
| 1970 |
+
| Hadith | `gurgutan/sunnah_ar_en_dataset` | Religious | 50,762 hadiths |
|
| 1971 |
+
| Arabic Sentiment | `arbml/Arabic_Sentiment_Twitter_Corpus` | Social Media | Twitter sentiment |
|
| 1972 |
+
| SANAD | `arbml/SANAD` | News | Arabic news articles |
|
| 1973 |
+
""")
|
| 1974 |
+
|
| 1975 |
+
# ===== TAB 4: Metrics Reference =====
|
| 1976 |
with gr.TabItem("π Metrics Guide", id="guide"):
|
| 1977 |
gr.Markdown("""
|
| 1978 |
## Tokenization Evaluation Metrics Guide
|
|
|
|
| 2007 |
- *"Evaluating Various Tokenizers for Arabic Text Classification"* (Alyafeai et al.)
|
| 2008 |
- *"Beyond Fertility: STRR as a Metric for Multilingual Tokenization"* (2025)
|
| 2009 |
- *"Arabic Stable LM: Adapting Stable LM to Arabic"* (2024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2010 |
""")
|
| 2011 |
|
| 2012 |
+
# ===== TAB 5: About =====
|
| 2013 |
with gr.TabItem("βΉοΈ About", id="about"):
|
| 2014 |
gr.Markdown(f"""
|
| 2015 |
## Arabic Tokenizer Arena Pro
|
|
|
|
| 2019 |
### Available Tokenizers: {len(available_tokenizers)}
|
| 2020 |
|
| 2021 |
**Arabic-Specific Models:**
|
| 2022 |
+
{chr(10).join(['- ' + t for t in arabic_specific[:10]])}
|
| 2023 |
|
| 2024 |
**Arabic LLMs:**
|
| 2025 |
+
{chr(10).join(['- ' + t for t in arabic_llms[:10]])}
|
| 2026 |
|
| 2027 |
**Multilingual LLMs:**
|
| 2028 |
+
{chr(10).join(['- ' + t for t in multilingual[:10]])}
|
| 2029 |
|
| 2030 |
### Features
|
| 2031 |
|
|
|
|
| 2033 |
β
Arabic-specific analysis (dialect support, diacritic preservation)
|
| 2034 |
β
Side-by-side tokenizer comparison
|
| 2035 |
β
Beautiful token visualization
|
| 2036 |
+
β
**NEW: Leaderboard with real HuggingFace datasets**
|
| 2037 |
β
Support for MSA, dialectal Arabic, and Classical Arabic
|
| 2038 |
β
Research-backed evaluation methodology
|
| 2039 |
|
|
|
|
| 2057 |
|
| 2058 |
if __name__ == "__main__":
|
| 2059 |
demo = create_interface()
|
| 2060 |
+
demo.launch()
|