PIWM / app.py
musictimer's picture
Fix initial bugs
a836ad8
"""
Web-based Diamond CSGO AI Player for Hugging Face Spaces
Uses FastAPI + WebSocket for real-time keyboard input and game streaming
"""
# Fix environment variables FIRST, before any other imports
import os
import tempfile
# Fix OMP_NUM_THREADS immediately (before PyTorch/NumPy imports)
if "OMP_NUM_THREADS" not in os.environ or not os.environ.get("OMP_NUM_THREADS", "").isdigit():
os.environ["OMP_NUM_THREADS"] = "2"
# Set up cache directories immediately
temp_dir = tempfile.gettempdir()
os.environ.setdefault("TORCH_HOME", os.path.join(temp_dir, "torch"))
os.environ.setdefault("HF_HOME", os.path.join(temp_dir, "huggingface"))
os.environ.setdefault("TRANSFORMERS_CACHE", os.path.join(temp_dir, "transformers"))
# Create cache directories
for cache_var in ["TORCH_HOME", "HF_HOME", "TRANSFORMERS_CACHE"]:
cache_path = os.environ[cache_var]
os.makedirs(cache_path, exist_ok=True)
import asyncio
import base64
import io
import json
import logging
from pathlib import Path
from typing import Dict, List, Optional, Set, Tuple
import cv2
import numpy as np
import torch
import uvicorn
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from hydra import compose, initialize
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from PIL import Image
# Import your modules
import sys
from pathlib import Path
# Add project root to path for src package imports
project_root = Path(__file__).parent
if str(project_root) not in sys.path:
sys.path.insert(0, str(project_root))
from src.agent import Agent
from src.csgo.web_action_processing import WebCSGOAction, web_keys_to_csgo_action_names
from src.envs import WorldModelEnv
from src.game.web_play_env import WebPlayEnv
from src.utils import extract_state_dict
from config_web import web_config
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables
app = FastAPI(title="Diamond CSGO AI Player")
# Set safe defaults for headless CI/Spaces environments
os.environ.setdefault("SDL_VIDEODRIVER", "dummy")
os.environ.setdefault("SDL_AUDIODRIVER", "dummy")
os.environ.setdefault("PYGAME_HIDE_SUPPORT_PROMPT", "1")
# Environment variables already set at top of file
connected_clients: Set[WebSocket] = set()
class WebKeyMap:
"""Map web key codes to pygame-like keys for CSGO actions"""
WEB_TO_CSGO = {
'KeyW': 'w',
'KeyA': 'a',
'KeyS': 's',
'KeyD': 'd',
'Space': 'space',
'ControlLeft': 'left ctrl',
'ShiftLeft': 'left shift',
'Digit1': '1',
'Digit2': '2',
'Digit3': '3',
'KeyR': 'r',
'ArrowUp': 'camera_up',
'ArrowDown': 'camera_down',
'ArrowLeft': 'camera_left',
'ArrowRight': 'camera_right'
}
class WebGameEngine:
"""Web-compatible game engine that replaces pygame functionality"""
def __init__(self):
self.play_env: Optional[WebPlayEnv] = None
self.obs = None
self.running = False
self.game_started = False
# Allow runtime tuning via environment variables
import os
self.fps = int(os.getenv("DISPLAY_FPS", "30")) # Display FPS
# Increase default AI inference FPS; can be overridden with AI_FPS env var
self.ai_fps = int(os.getenv("AI_FPS", "15"))
# Send every Nth frame to the browser (1 = send all frames)
self.send_every = int(os.getenv("DISPLAY_SKIP", "1"))
self.frame_count = 0
self.ai_frame_count = 0
self.last_ai_time = 0
self.start_time = 0 # Track when AI started for proper FPS calculation
self.pressed_keys: Set[str] = set()
self.mouse_x = 0
self.mouse_y = 0
self.l_click = False
self.r_click = False
self.should_reset = False
self.cached_obs = None # Cache last observation for frame skipping
self.first_inference_done = False # Track if first inference completed
self.models_ready = False # Track if models are loaded
self.download_progress = 0 # Track download progress (0-100)
self.loading_status = "Initializing..." # Loading status message
self.actor_critic_loaded = False # Track if actor_critic was loaded with trained weights
import time
self.time_module = time
# Async inference queues to decouple GPU work from websocket I/O
import asyncio
self._in_queue: asyncio.Queue = asyncio.Queue(maxsize=1)
self._out_queue: asyncio.Queue = asyncio.Queue(maxsize=1)
# Flag to start worker once models are ready
self._worker_started = False
async def _load_model_from_url_async(self, agent, device):
"""Load model from URL using torch.hub (HF Spaces compatible)"""
import asyncio
import concurrent.futures
def load_model_weights():
"""Load model weights in thread pool to avoid blocking"""
try:
logger.info("Loading model using torch.hub.load_state_dict_from_url...")
self.loading_status = "Downloading model..."
self.download_progress = 10
model_url = "https://huggingface.co/Etadingrui/diamond-1B/resolve/main/agent_epoch_00003.pt"
# Use torch.hub to download and load state dict with custom cache dir
logger.info(f"Loading state dict from {model_url}")
# Set custom cache directory that we have write permissions for
cache_dir = os.path.join(tempfile.gettempdir(), "torch_cache")
os.makedirs(cache_dir, exist_ok=True)
# Use torch.hub with custom cache directory
state_dict = torch.hub.load_state_dict_from_url(
model_url,
map_location=device,
model_dir=cache_dir,
check_hash=False # Skip hash check for faster loading
)
self.download_progress = 60
self.loading_status = "Loading model weights into agent..."
logger.info("State dict loaded, applying to agent...")
# Check what components are in the state dict
has_actor_critic = any(k.startswith('actor_critic.') for k in state_dict.keys())
has_denoiser = any(k.startswith('denoiser.') for k in state_dict.keys())
has_upsampler = any(k.startswith('upsampler.') for k in state_dict.keys())
logger.info(f"Model components found - actor_critic: {has_actor_critic}, denoiser: {has_denoiser}, upsampler: {has_upsampler}")
# Load state dict into agent
agent.load_state_dict(state_dict, load_actor_critic=has_actor_critic)
# Track if actor_critic was actually loaded with trained weights
self.actor_critic_loaded = has_actor_critic
# For HF Spaces demo, if no actor_critic, we can still show the world model
if not has_actor_critic:
logger.warning("No actor_critic weights found - world model will work but AI won't play")
logger.info("Users can still interact and see the world model predictions")
self.download_progress = 100
self.loading_status = "Model loaded successfully!"
logger.info("All model weights loaded successfully!")
return True
except Exception as e:
logger.error(f"Failed to load model: {e}")
import traceback
traceback.print_exc()
return False
# Run in thread pool to avoid blocking with timeout
loop = asyncio.get_event_loop()
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
# Add timeout for model loading (5 minutes max)
future = loop.run_in_executor(executor, load_model_weights)
success = await asyncio.wait_for(future, timeout=300.0) # 5 minute timeout
return success
except asyncio.TimeoutError:
logger.error("Model loading timed out after 5 minutes")
self.loading_status = "Model loading timed out - using dummy mode"
return False
except Exception as e:
logger.error(f"Error in model loading executor: {e}")
self.loading_status = f"Model loading error: {str(e)[:50]}..."
return False
async def initialize_models(self):
"""Initialize the AI models and environment"""
try:
import torch
logger.info("Initializing models...")
# Setup environment and paths
web_config.setup_environment_variables()
web_config.create_default_configs()
config_path = web_config.get_config_path()
logger.info(f"Using config path: {config_path}")
# Convert to relative path for Hydra
import os
relative_config_path = os.path.relpath(config_path)
logger.info(f"Relative config path: {relative_config_path}")
with initialize(version_base="1.3", config_path=relative_config_path):
cfg = compose(config_name="trainer")
# Override config for deployment
cfg.agent = OmegaConf.load(config_path / "agent" / "csgo.yaml")
cfg.env = OmegaConf.load(config_path / "env" / "csgo.yaml")
# Use GPU if available, otherwise fall back to CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Log GPU availability and CUDA info for debugging
if torch.cuda.is_available():
logger.info(f"CUDA available: {torch.cuda.is_available()}")
logger.info(f"GPU device count: {torch.cuda.device_count()}")
logger.info(f"Current GPU: {torch.cuda.get_device_name(0)}")
logger.info(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
logger.info("🚀 GPU acceleration enabled!")
else:
logger.info("CUDA not available, using CPU mode")
# Initialize agent first
num_actions = cfg.env.num_actions
agent = Agent(instantiate(cfg.agent, num_actions=num_actions)).to(device).eval()
# Get spawn directory
spawn_dir = web_config.get_spawn_dir()
# Try to load checkpoint (remote first, then local, then dummy mode)
try:
# First try to load from Hugging Face Hub using torch.hub
logger.info("Loading model from Hugging Face Hub with torch.hub...")
success = await self._load_model_from_url_async(agent, device)
if success:
logger.info("Successfully loaded checkpoint from HF Hub")
else:
# Fallback to local checkpoint if available
logger.error("Failed to load from HF Hub! Check the detailed error above.")
checkpoint_path = web_config.get_checkpoint_path()
if checkpoint_path.exists():
logger.info(f"Loading local checkpoint: {checkpoint_path}")
self.loading_status = "Loading local checkpoint..."
agent.load(checkpoint_path)
logger.info(f"Successfully loaded local checkpoint: {checkpoint_path}")
# Assume local checkpoint has actor_critic weights (may need verification)
self.actor_critic_loaded = True
else:
logger.error(f"No local checkpoint found at: {checkpoint_path}")
raise FileNotFoundError("No model checkpoint available (local or remote)")
except Exception as e:
logger.error(f"Failed to load any checkpoint: {e}")
self._init_dummy_mode()
self.actor_critic_loaded = False # No actor_critic in dummy mode
return True
# Initialize world model environment
try:
sl = cfg.agent.denoiser.inner_model.num_steps_conditioning
if agent.upsampler is not None:
sl = max(sl, cfg.agent.upsampler.inner_model.num_steps_conditioning)
wm_env_cfg = instantiate(cfg.world_model_env, num_batches_to_preload=1)
wm_env = WorldModelEnv(agent.denoiser, agent.upsampler, agent.rew_end_model,
spawn_dir, 1, sl, wm_env_cfg, return_denoising_trajectory=True)
# Create play environment
self.play_env = WebPlayEnv(agent, wm_env, False, False, False)
# Verify actor-critic is loaded and ready for inference
if agent.actor_critic is not None and self.actor_critic_loaded:
logger.info(f"Actor-critic model loaded with {agent.actor_critic.lstm_dim} LSTM dimensions")
logger.info(f"Actor-critic device: {agent.actor_critic.device}")
# Force AI control for web demo
self.play_env.is_human_player = False
logger.info("✅ WebPlayEnv set to AI control mode - ready for inference!")
elif agent.actor_critic is not None and not self.actor_critic_loaded:
logger.warning("⚠️ Actor-critic model exists but has no trained weights!")
logger.info("🎮 Demo will work in world-model mode (human input + world simulation)")
# Still allow human input to drive the world model
self.play_env.is_human_player = True
self.play_env.human_input_override = True # Always use human input
logger.info("WebPlayEnv set to human control mode (no trained weights)")
else:
logger.warning("❌ No actor-critic model found - AI inference will not work!")
self.play_env.is_human_player = True
logger.info("WebPlayEnv set to human control mode (fallback)")
# Set up cache directories for HF Spaces compatibility
import os, pwd, tempfile
try:
pwd.getpwuid(os.getuid())
except KeyError:
os.environ["USER"] = "huggingface"
# Set writable cache directories for HF Spaces
cache_dir = tempfile.gettempdir()
os.environ.setdefault("TRITON_CACHE_DIR", os.path.join(cache_dir, "triton"))
os.environ.setdefault("TORCH_COMPILE_DEBUG_DIR", os.path.join(cache_dir, "torch_compile"))
# Create cache directories
for cache_var in ["TRITON_CACHE_DIR", "TORCH_COMPILE_DEBUG_DIR"]:
cache_path = os.environ[cache_var]
os.makedirs(cache_path, exist_ok=True)
# Enable torch.compile with proper error handling for HF Spaces
# Check if we're on HF Spaces (common indicators)
is_hf_spaces = any([
'space_id' in os.environ,
'huggingface' in os.environ.get('USER', '').lower(),
'/app' in os.getcwd()
])
# Enable compilation by default everywhere, including HF Spaces
# Can disable with DISABLE_TORCH_COMPILE=1 if needed
disable_compile = os.getenv("DISABLE_TORCH_COMPILE", "0") == "1"
compile_enabled = (device.type == "cuda" and not disable_compile)
if compile_enabled:
logger.info("Compiling models for faster inference (like play.py --compile)...")
try:
wm_env.predict_next_obs = torch.compile(wm_env.predict_next_obs, mode="reduce-overhead")
if wm_env.upsample_next_obs is not None:
wm_env.upsample_next_obs = torch.compile(wm_env.upsample_next_obs, mode="reduce-overhead")
logger.info("✅ Model compilation enabled successfully!")
except Exception as e:
logger.warning(f"⚠️ Model compilation failed: {e}")
logger.info("Continuing without model compilation...")
else:
if disable_compile:
reason = "DISABLE_TORCH_COMPILE=1 set"
else:
reason = "no CUDA device available"
logger.info(f"Model compilation disabled ({reason}). Models will run uncompiled.")
# Reset environment
self.obs, _ = self.play_env.reset()
self.cached_obs = self.obs # Initialize cache
logger.info("Models initialized successfully!")
logger.info(f"Initial observation shape: {self.obs.shape if self.obs is not None else 'None'}")
self.models_ready = True
self.loading_status = "Ready!"
return True
except Exception as e:
logger.error(f"Failed to initialize world model environment: {e}")
self._init_dummy_mode()
self.actor_critic_loaded = False # No actor_critic in dummy mode
self.models_ready = True
self.loading_status = "Using dummy mode"
return True
except Exception as e:
logger.error(f"Failed to initialize models: {e}")
import traceback
traceback.print_exc()
self._init_dummy_mode()
self.actor_critic_loaded = False # No actor_critic in dummy mode
self.models_ready = True
self.loading_status = "Error - using dummy mode"
return True
def _init_dummy_mode(self):
"""Initialize dummy mode for testing without models"""
logger.info("Initializing dummy mode...")
# Create a test observation
height, width = 150, 600
img_array = np.zeros((height, width, 3), dtype=np.uint8)
# Add test pattern
for y in range(height):
for x in range(width):
img_array[y, x, 0] = (x % 256) # Red gradient
img_array[y, x, 1] = (y % 256) # Green gradient
img_array[y, x, 2] = ((x + y) % 256) # Blue pattern
# Convert to torch tensor in expected format [-1, 1]
tensor = torch.from_numpy(img_array).float().permute(2, 0, 1) # CHW format
tensor = tensor.div(255).mul(2).sub(1) # Convert to [-1, 1] range
tensor = tensor.unsqueeze(0) # Add batch dimension
self.obs = tensor
self.play_env = None # No real environment in dummy mode
logger.info("Dummy mode initialized with test pattern")
def step_environment(self):
"""Step the environment with current input state (with intelligent frame skipping)"""
if self.play_env is None:
# Dummy mode - just return current observation
return self.obs, 0.0, False, False, {"mode": "dummy"}
try:
# Check if reset is requested
if self.should_reset:
self.reset_environment()
self.should_reset = False
self.last_ai_time = self.time_module.time() # Reset AI timer
return self.obs, 0.0, False, False, {"reset": True}
current_time = self.time_module.time()
# Push task to inference queue if needed
time_since_last_ai = current_time - self.last_ai_time
should_run_ai = time_since_last_ai >= (1.0 / self.ai_fps)
if should_run_ai and self._in_queue.empty():
# Snapshot web input state
web_state = dict(
pressed_keys=set(self.pressed_keys),
mouse_x=self.mouse_x,
mouse_y=self.mouse_y,
l_click=self.l_click,
r_click=self.r_click,
)
asyncio.create_task(self._in_queue.put((self.obs, web_state)))
# Check for completed inference
if not self._out_queue.empty():
(next_obs, reward, done, truncated, info, inference_time) = self._out_queue.get_nowait()
# Log first inference completion
if not self.first_inference_done:
self.first_inference_done = True
logger.info(f"First AI inference completed in {inference_time:.2f}s - subsequent inferences will be faster!")
# Cache the new observation and update timing
self.cached_obs = next_obs
self.last_ai_time = current_time
self.ai_frame_count += 1
# Add AI performance info
info = info or {}
info["ai_inference"] = True
# Calculate proper AI FPS: frames / elapsed time since start
elapsed_time = current_time - self.start_time
if elapsed_time > 0 and self.ai_frame_count > 0:
ai_fps = self.ai_frame_count / elapsed_time
# Cap at reasonable maximum (shouldn't exceed 100 FPS for AI inference)
info["ai_fps"] = min(ai_fps, 100.0)
else:
info["ai_fps"] = 0
info["inference_time"] = inference_time
return next_obs, reward, done, truncated, info
else:
# Use cached observation for smoother display without AI overhead
obs_to_return = self.cached_obs if self.cached_obs is not None else self.obs
# Calculate AI FPS for cached frames too
elapsed_time = current_time - self.start_time
if elapsed_time > 0 and self.ai_frame_count > 0:
ai_fps = min(self.ai_frame_count / elapsed_time, 100.0) # Cap at 100 FPS
else:
ai_fps = 0
return obs_to_return, 0.0, False, False, {"cached": True, "ai_fps": ai_fps}
except Exception as e:
logger.error(f"Error stepping environment: {e}")
obs_to_return = self.cached_obs if self.cached_obs is not None else self.obs
return obs_to_return, 0.0, False, False, {"error": str(e)}
def reset_environment(self):
"""Reset the environment"""
try:
if self.play_env is not None:
self.obs, _ = self.play_env.reset()
self.cached_obs = self.obs # Update cache
logger.info("Environment reset successfully")
else:
# Dummy mode - recreate test pattern
self._init_dummy_mode()
self.cached_obs = self.obs # Update cache
logger.info("Dummy environment reset")
except Exception as e:
logger.error(f"Error resetting environment: {e}")
def request_reset(self):
"""Request environment reset on next step"""
self.should_reset = True
logger.info("Environment reset requested")
def start_game(self):
"""Start the game"""
self.game_started = True
self.start_time = self.time_module.time() # Reset start time for FPS calculation
self.ai_frame_count = 0 # Reset AI frame count
logger.info("Game started")
def pause_game(self):
"""Pause/stop the game"""
self.game_started = False
logger.info("Game paused")
def obs_to_base64(self, obs: torch.Tensor) -> str:
"""Convert observation tensor to base64 image for web display"""
if obs is None:
return ""
try:
# Convert tensor to PIL Image
if obs.ndim == 4 and obs.size(0) == 1:
img_array = obs[0].add(1).div(2).mul(255).byte().permute(1, 2, 0).cpu().numpy()
else:
img_array = obs.add(1).div(2).mul(255).byte().permute(1, 2, 0).cpu().numpy()
img = Image.fromarray(img_array)
# Resize for web display to match canvas size (optimized)
img = img.resize((600, 150), Image.NEAREST)
# Choose codec via env var for flexibility (jpeg|png)
codec = os.getenv("IMG_CODEC", "jpeg").lower()
img_np = np.array(img)[:, :, ::-1] # RGB -> BGR
if codec == "png":
success, encoded_img = cv2.imencode('.png', img_np, [cv2.IMWRITE_PNG_COMPRESSION, 1])
mime = 'png'
else:
# JPEG with quality 70 for speed/size balance
success, encoded_img = cv2.imencode('.jpg', img_np, [cv2.IMWRITE_JPEG_QUALITY, 70])
mime = 'jpeg'
if not success:
return ""
img_str = base64.b64encode(encoded_img).decode()
return f"data:image/{mime};base64,{img_str}"
except Exception as e:
logger.error(f"Error converting observation to base64: {e}")
return ""
# ------------------------------------------------------------------
# Faster binary encoder (JPEG/PNG) with OpenCV – no Pillow involved
# ------------------------------------------------------------------
def obs_to_bytes(self, obs: torch.Tensor) -> Tuple[bytes, str]:
"""Return encoded image bytes and MIME (image/jpeg or image/png)."""
if obs is None:
return b"", "image/jpeg"
try:
# Keep operations on GPU as long as possible (like play.py)
if obs.ndim == 4 and obs.size(0) == 1:
img_tensor = obs[0]
else:
img_tensor = obs
# Resize on GPU first (faster than CPU resize)
img_tensor = torch.nn.functional.interpolate(
img_tensor.unsqueeze(0), size=(75, 300), mode='nearest'
).squeeze(0)
# Convert to uint8 on GPU, then transfer to CPU once
img_np = (img_tensor.add(1).mul(127.5).clamp(0, 255).byte()
.permute(1, 2, 0).contiguous().cpu().numpy()) # HWC uint8
# Encode with OpenCV
import os
codec = os.getenv("IMG_CODEC", "jpeg").lower()
if codec == "png":
ok, enc = cv2.imencode('.png', img_np, [cv2.IMWRITE_PNG_COMPRESSION, 1])
mime = "image/png"
else:
ok, enc = cv2.imencode('.jpg', img_np, [cv2.IMWRITE_JPEG_QUALITY, 75])
mime = "image/jpeg"
if not ok:
return b"", mime
return enc.tobytes(), mime
except Exception as e:
logger.error(f"obs_to_bytes error: {e}")
return b"", "image/jpeg"
async def game_loop(self):
"""Main game loop that runs continuously"""
self.running = True
# Start inference worker once, when models are ready
while self.running:
loop_start_time = self.time_module.time()
# Spawn worker lazily after models initialized
if self.models_ready and not self._worker_started:
asyncio.create_task(self._inference_worker())
self._worker_started = True
try:
# Check if models are ready
if not self.models_ready:
# Send loading status to clients
if connected_clients:
loading_data = {
'type': 'loading',
'status': self.loading_status,
'progress': self.download_progress,
'ready': False
}
disconnected = set()
for client in connected_clients.copy():
try:
await client.send_text(json.dumps(loading_data))
except:
disconnected.add(client)
connected_clients.difference_update(disconnected)
await asyncio.sleep(0.5) # Check every 500ms during loading
continue
# Always send frames, but only step environment if game is started
should_send_frame = True
if not self.game_started:
# Game not started - just send current observation without stepping
if self.obs is not None and connected_clients:
should_send_frame = True
else:
should_send_frame = False
await asyncio.sleep(0.1)
else:
# Game is started - step environment
if self.play_env is None:
await asyncio.sleep(0.1)
continue
# Step environment with current input state
next_obs, reward, done, truncated, info = self.step_environment()
if done or truncated:
# Auto-reset when episode ends
self.reset_environment()
else:
self.obs = next_obs
# Send frame to all connected clients (regardless of game state)
if should_send_frame and connected_clients and self.obs is not None and (self.frame_count % self.send_every == 0):
# Set default values for when game isn't running
if not self.game_started:
reward = 0.0
info = {"waiting": True}
# If game is started, reward and info should be set above
# Prefer binary frames if client agrees (feature flag)
use_binary = os.getenv("BINARY_WS", "0") == "1"
if use_binary:
img_bytes, mime = self.obs_to_bytes(self.obs)
meta = {
'type': 'frame_meta',
'mime': mime,
'frame_count': self.frame_count,
'reward': float(reward.item()) if hasattr(reward, 'item') else float(reward) if reward is not None else 0.0,
'info': str(info) if info else "",
'ai_fps': info.get('ai_fps', 0) if isinstance(info, dict) else 0,
'is_ai_frame': info.get('ai_inference', False) if isinstance(info, dict) else False
}
disconnected = set()
for client in connected_clients.copy():
try:
await client.send_text(json.dumps(meta))
await client.send_bytes(img_bytes)
except:
disconnected.add(client)
connected_clients.difference_update(disconnected)
else:
# Fallback to base64 JSON
image_data = self.obs_to_base64(self.obs)
if self.frame_count < 5:
logger.info(
f"Frame {self.frame_count}: base64_len={len(image_data)} ai={info.get('ai_fps',0):.1f}")
frame_data = {
'type': 'frame',
'image': image_data,
'frame_count': self.frame_count,
'reward': float(reward.item()) if hasattr(reward, 'item') else float(reward) if reward is not None else 0.0,
'info': str(info) if info else "",
'ai_fps': info.get('ai_fps', 0) if isinstance(info, dict) else 0,
'is_ai_frame': info.get('ai_inference', False) if isinstance(info, dict) else False
}
disconnected = set()
for client in connected_clients.copy():
try:
await client.send_text(json.dumps(frame_data))
except:
disconnected.add(client)
connected_clients.difference_update(disconnected)
self.frame_count += 1
# Adaptive sleep so we don't waste idle time when GPU faster than display FPS
loop_elapsed = self.time_module.time() - loop_start_time
sleep_for = max((1.0 / self.fps) - loop_elapsed, 0)
if sleep_for:
await asyncio.sleep(sleep_for)
except Exception as e:
logger.error(f"Error in game loop: {e}")
await asyncio.sleep(0.1)
async def _inference_worker(self):
"""Runs AI inference in background to avoid blocking I/O."""
logger.info("Inference worker started")
next_inference_time = self.time_module.time()
while True:
obs, web_state = await self._in_queue.get()
# Timing control: maintain steady AI_FPS like play.py's clock.tick()
now = self.time_module.time()
if now < next_inference_time:
await asyncio.sleep(next_inference_time - now)
next_inference_time += 1.0 / self.ai_fps
# Run inference directly in asyncio (not thread pool) with autocast for speed
try:
start = self.time_module.time()
# Use FP16 autocast for faster inference (like play.py can do with modern GPUs)
# Use newer autocast API to avoid deprecation warning
import torch
with torch.amp.autocast('cuda', dtype=torch.float16, enabled=torch.cuda.is_available()):
res = self.play_env.step_from_web_input(**web_state)
infer_t = self.time_module.time() - start
await self._out_queue.put((*res, infer_t))
except Exception as e:
logger.error(f"Inference worker error: {e}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
# Create a proper dummy result with correct tensor properties
try:
if self.obs is not None and hasattr(self.obs, 'shape') and hasattr(self.obs, 'device'):
dummy_obs = self.obs.clone()
else:
# Fallback to a standard tensor on the right device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dummy_obs = torch.zeros(1, 3, 150, 600, device=device)
await self._out_queue.put((dummy_obs, 0.0, False, False, {"error": str(e)}, 0.0))
except Exception as e2:
logger.error(f"Error creating dummy result: {e2}")
# Last resort - create CPU tensor
dummy_obs = torch.zeros(1, 3, 150, 600)
await self._out_queue.put((dummy_obs, 0.0, False, False, {"error": str(e)}, 0.0))
# Global game engine instance
game_engine = WebGameEngine()
@app.on_event("startup")
async def startup_event():
"""Initialize models when the app starts"""
# Start the game loop immediately (it will handle loading state)
asyncio.create_task(game_engine.game_loop())
# Initialize models in background (non-blocking)
asyncio.create_task(game_engine.initialize_models())
@app.get("/", response_class=HTMLResponse)
async def get_homepage():
"""Serve the main game interface"""
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Physics-informed BEV World Model</title>
<style>
body {
margin: 0;
padding: 20px;
background: #1a1a1a;
color: white;
font-family: 'Courier New', monospace;
text-align: center;
}
#gameCanvas {
border: 2px solid #00ff00;
background: #000;
margin: 20px auto;
display: block;
}
#controls {
margin: 20px;
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
max-width: 800px;
margin: 20px auto;
}
.control-section {
background: #2a2a2a;
padding: 15px;
border-radius: 8px;
border: 1px solid #444;
}
.key-display {
background: #333;
border: 1px solid #555;
padding: 5px 10px;
margin: 2px;
border-radius: 4px;
display: inline-block;
min-width: 30px;
}
.key-pressed {
background: #00ff00;
color: #000;
}
#status {
margin: 10px;
padding: 10px;
background: #2a2a2a;
border-radius: 4px;
}
.info {
color: #00ff00;
margin: 5px 0;
}
</style>
</head>
<body>
<h1>🎮 Physics-informed BEV World Model</h1>
<p><strong>Click the game canvas to start playing!</strong> Use ESC to pause, Enter to reset environment.</p>
<p id="loadingIndicator" style="color: #ffff00; display: none;">🚀 Starting AI inference... This may take 5-15 seconds on first run.</p>
<!-- Model Download Progress -->
<div id="downloadSection" style="display: none; margin: 20px;">
<p id="downloadStatus" style="color: #ffaa00; margin: 10px 0;">📥 Downloading AI model...</p>
<div style="background: #333; border-radius: 10px; padding: 3px; width: 100%; max-width: 600px; margin: 0 auto;">
<div id="progressBar" style="background: linear-gradient(90deg, #00ff00, #88ff00); height: 20px; border-radius: 7px; width: 0%; transition: width 0.3s;"></div>
</div>
<p id="progressText" style="color: #aaa; font-size: 14px; margin: 5px 0;">0% - Initializing...</p>
</div>
<canvas id="gameCanvas" width="600" height="150" tabindex="0"></canvas>
<div id="status">
<div class="info">Status: <span id="connectionStatus">Connecting...</span></div>
<div class="info">Game: <span id="gameStatus">Click to Start</span></div>
<div class="info">Frame: <span id="frameCount">0</span> | AI FPS: <span id="aiFps">0</span></div>
<div class="info">Reward: <span id="reward">0</span></div>
</div>
<div id="controls">
<div class="control-section">
<h3>Movement</h3>
<div>
<span class="key-display" id="key-w">W</span> Forward<br>
<span class="key-display" id="key-a">A</span> Left
<span class="key-display" id="key-s">S</span> Back
<span class="key-display" id="key-d">D</span> Right<br>
<span class="key-display" id="key-space">Space</span> Jump
<span class="key-display" id="key-ctrl">Ctrl</span> Crouch
<span class="key-display" id="key-shift">Shift</span> Walk
</div>
</div>
<div class="control-section">
<h3>Actions</h3>
<div>
<span class="key-display" id="key-1">1</span> Weapon 1<br>
<span class="key-display" id="key-2">2</span> Weapon 2
<span class="key-display" id="key-3">3</span> Weapon 3<br>
<span class="key-display" id="key-r">R</span> Reload<br>
<span class="key-display" id="key-arrows">↑↓←→</span> Camera<br>
<span class="key-display" id="key-enter">Enter</span> Reset Game<br>
<span class="key-display" id="key-esc">Esc</span> Pause/Quit
</div>
</div>
</div>
<script>
const canvas = document.getElementById('gameCanvas');
const ctx = canvas.getContext('2d');
const statusEl = document.getElementById('connectionStatus');
const gameStatusEl = document.getElementById('gameStatus');
const frameEl = document.getElementById('frameCount');
const aiFpsEl = document.getElementById('aiFps');
const rewardEl = document.getElementById('reward');
const loadingEl = document.getElementById('loadingIndicator');
const downloadSectionEl = document.getElementById('downloadSection');
const downloadStatusEl = document.getElementById('downloadStatus');
const progressBarEl = document.getElementById('progressBar');
const progressTextEl = document.getElementById('progressText');
let ws = null;
let pressedKeys = new Set();
let gameStarted = false;
// Key mapping
const keyDisplayMap = {
'KeyW': 'key-w',
'KeyA': 'key-a',
'KeyS': 'key-s',
'KeyD': 'key-d',
'Space': 'key-space',
'ControlLeft': 'key-ctrl',
'ShiftLeft': 'key-shift',
'Digit1': 'key-1',
'Digit2': 'key-2',
'Digit3': 'key-3',
'KeyR': 'key-r',
'ArrowUp': 'key-arrows',
'ArrowDown': 'key-arrows',
'ArrowLeft': 'key-arrows',
'ArrowRight': 'key-arrows',
'Enter': 'key-enter',
'Escape': 'key-esc'
};
function connectWebSocket() {
const protocol = window.location.protocol === 'https:' ? 'wss:' : 'ws:';
const wsUrl = `${protocol}//${window.location.host}/ws`;
ws = new WebSocket(wsUrl);
ws.onopen = function(event) {
statusEl.textContent = 'Connected';
statusEl.style.color = '#00ff00';
// If user already clicked to start before WS was ready, send start now
if (gameStarted) {
ws.send(JSON.stringify({ type: 'start' }));
}
};
ws.onmessage = function(event) {
const data = JSON.parse(event.data);
if (data.type === 'loading') {
// Handle loading status
downloadSectionEl.style.display = 'block';
downloadStatusEl.textContent = data.status;
if (data.progress !== undefined) {
progressBarEl.style.width = data.progress + '%';
progressTextEl.textContent = data.progress + '% - ' + data.status;
} else {
progressTextEl.textContent = data.status;
}
gameStatusEl.textContent = 'Loading Models...';
gameStatusEl.style.color = '#ffaa00';
} else if (data.type === 'frame') {
// Hide loading indicators once we get frames
downloadSectionEl.style.display = 'none';
// Update frame display
if (data.image) {
const img = new Image();
img.onload = function() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
};
img.src = data.image;
}
frameEl.textContent = data.frame_count;
rewardEl.textContent = data.reward.toFixed(2);
// Update AI FPS display and hide loading indicator once AI starts
if (data.ai_fps !== undefined && data.ai_fps !== null) {
// Ensure FPS value is reasonable
const aiFps = Math.min(Math.max(data.ai_fps, 0), 100);
aiFpsEl.textContent = aiFps.toFixed(1);
// Color code AI FPS for performance indication
if (aiFps >= 8) {
aiFpsEl.style.color = '#00ff00'; // Green for good performance
} else if (aiFps >= 5) {
aiFpsEl.style.color = '#ffff00'; // Yellow for moderate performance
} else if (aiFps > 0) {
aiFpsEl.style.color = '#ff0000'; // Red for poor performance
} else {
aiFpsEl.style.color = '#888888'; // Gray for inactive
}
// Hide loading indicator once AI inference starts working
if (aiFps > 0 && gameStarted) {
loadingEl.style.display = 'none';
gameStatusEl.textContent = 'Playing';
gameStatusEl.style.color = '#00ff00';
}
}
}
};
ws.onclose = function(event) {
statusEl.textContent = 'Disconnected';
statusEl.style.color = '#ff0000';
setTimeout(connectWebSocket, 1000); // Reconnect after 1 second
};
ws.onerror = function(event) {
statusEl.textContent = 'Error';
statusEl.style.color = '#ff0000';
};
}
function sendKeyState() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'keys',
keys: Array.from(pressedKeys)
}));
}
}
function startGame() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'start'
}));
gameStarted = true;
gameStatusEl.textContent = 'Starting AI...';
gameStatusEl.style.color = '#ffff00';
loadingEl.style.display = 'block';
console.log('Game started');
}
}
function pauseGame() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'pause'
}));
gameStarted = false;
gameStatusEl.textContent = 'Paused - Click to Resume';
gameStatusEl.style.color = '#ffff00';
console.log('Game paused');
}
}
function updateKeyDisplay() {
// Reset all key displays
Object.values(keyDisplayMap).forEach(id => {
const el = document.getElementById(id);
if (el) el.classList.remove('key-pressed');
});
// Highlight pressed keys
pressedKeys.forEach(key => {
const displayId = keyDisplayMap[key];
if (displayId) {
const el = document.getElementById(displayId);
if (el) el.classList.add('key-pressed');
}
});
}
// Focus canvas and handle keyboard events
canvas.addEventListener('click', () => {
canvas.focus();
if (!gameStarted) {
// Queue start locally and send immediately if WS is open
gameStarted = true;
gameStatusEl.textContent = 'Starting AI...';
gameStatusEl.style.color = '#ffff00';
loadingEl.style.display = 'block';
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({ type: 'start' }));
}
}
});
canvas.addEventListener('keydown', (event) => {
event.preventDefault();
// Handle special keys
if (event.code === 'Enter') {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'reset'
}));
console.log('Environment reset requested');
}
// Add to pressedKeys for visual feedback
pressedKeys.add(event.code);
updateKeyDisplay();
// Remove Enter from pressedKeys after a short delay for visual feedback
setTimeout(() => {
pressedKeys.delete(event.code);
updateKeyDisplay();
}, 200);
} else if (event.code === 'Escape') {
pauseGame();
// Add to pressedKeys for visual feedback
pressedKeys.add(event.code);
updateKeyDisplay();
// Remove ESC from pressedKeys after a short delay for visual feedback
setTimeout(() => {
pressedKeys.delete(event.code);
updateKeyDisplay();
}, 200);
} else {
// Only send game keys if game is started
if (gameStarted) {
pressedKeys.add(event.code);
updateKeyDisplay();
sendKeyState();
}
}
});
canvas.addEventListener('keyup', (event) => {
event.preventDefault();
// Don't handle special keys release (handled in keydown with timeout)
if (event.code !== 'Enter' && event.code !== 'Escape') {
if (gameStarted) {
pressedKeys.delete(event.code);
updateKeyDisplay();
sendKeyState();
}
}
});
// Handle mouse events for clicks
canvas.addEventListener('mousedown', (event) => {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'mouse',
button: event.button,
action: 'down',
x: event.offsetX,
y: event.offsetY
}));
}
});
canvas.addEventListener('mouseup', (event) => {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'mouse',
button: event.button,
action: 'up',
x: event.offsetX,
y: event.offsetY
}));
}
});
// Initialize
connectWebSocket();
canvas.focus();
</script>
</body>
</html>
"""
return html_content
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
"""Handle WebSocket connections for real-time game communication"""
await websocket.accept()
connected_clients.add(websocket)
try:
while True:
# Receive messages from client
data = await websocket.receive_text()
message = json.loads(data)
if message['type'] == 'keys':
# Update pressed keys
game_engine.pressed_keys = set(message['keys'])
elif message['type'] == 'reset':
# Handle environment reset request
game_engine.request_reset()
elif message['type'] == 'start':
# Handle game start request
game_engine.start_game()
elif message['type'] == 'pause':
# Handle game pause request
game_engine.pause_game()
elif message['type'] == 'mouse':
# Handle mouse events
if message['action'] == 'down':
if message['button'] == 0: # Left click
game_engine.l_click = True
elif message['button'] == 2: # Right click
game_engine.r_click = True
elif message['action'] == 'up':
if message['button'] == 0: # Left click
game_engine.l_click = False
elif message['button'] == 2: # Right click
game_engine.r_click = False
# Update mouse position (relative to canvas)
game_engine.mouse_x = message.get('x', 0) - 300 # Center at 300px
game_engine.mouse_y = message.get('y', 0) - 150 # Center at 150px
except WebSocketDisconnect:
connected_clients.discard(websocket)
except Exception as e:
logger.error(f"WebSocket error: {e}")
connected_clients.discard(websocket)
if __name__ == "__main__":
# For local development
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)