Spaces:
Sleeping
Sleeping
File size: 56,589 Bytes
c64c726 5a63400 c64c726 052d6f4 c64c726 ded2bd6 c64c726 93dbff3 c64c726 f1594be 745484d 5a63400 c64c726 052d6f4 c64c726 1d96a61 c64c726 052d6f4 c64c726 93dbff3 c64c726 93dbff3 ded2bd6 bbfa773 93dbff3 bbfa773 93dbff3 745484d ded2bd6 745484d bbfa773 7deb5ff ded2bd6 93dbff3 41e58ab ded2bd6 41e58ab ded2bd6 93dbff3 1d96a61 41e58ab 93dbff3 bbfa773 93dbff3 ded2bd6 bbfa773 93dbff3 c64c726 bbfa773 c64c726 bbfa773 c64c726 5a63400 c64c726 5a63400 ded2bd6 5a63400 ded2bd6 5a63400 ded2bd6 a29f249 c64c726 a29f249 c64c726 93dbff3 c64c726 ded2bd6 a29f249 c64c726 93dbff3 c64c726 1d96a61 c64c726 ded2bd6 c64c726 1d96a61 c64c726 ded2bd6 1d96a61 ded2bd6 41e58ab 1d96a61 41e58ab 1d96a61 41e58ab 1d96a61 ded2bd6 41e58ab ded2bd6 41e58ab d294854 41e58ab a836ad8 62f4595 a836ad8 41e58ab 052d6f4 c64c726 41e58ab c64c726 41e58ab c64c726 62f4595 a836ad8 62f4595 a836ad8 41e58ab c64c726 1d96a61 c64c726 1d96a61 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 c64c726 052d6f4 41e58ab 052d6f4 41e58ab 052d6f4 c64c726 1d96a61 c64c726 1d96a61 c64c726 b8159f9 c64c726 b8159f9 c64c726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 |
"""
Web-based Diamond CSGO AI Player for Hugging Face Spaces
Uses FastAPI + WebSocket for real-time keyboard input and game streaming
"""
# Fix environment variables FIRST, before any other imports
import os
import tempfile
# Fix OMP_NUM_THREADS immediately (before PyTorch/NumPy imports)
if "OMP_NUM_THREADS" not in os.environ or not os.environ.get("OMP_NUM_THREADS", "").isdigit():
os.environ["OMP_NUM_THREADS"] = "2"
# Set up cache directories immediately
temp_dir = tempfile.gettempdir()
os.environ.setdefault("TORCH_HOME", os.path.join(temp_dir, "torch"))
os.environ.setdefault("HF_HOME", os.path.join(temp_dir, "huggingface"))
os.environ.setdefault("TRANSFORMERS_CACHE", os.path.join(temp_dir, "transformers"))
# Create cache directories
for cache_var in ["TORCH_HOME", "HF_HOME", "TRANSFORMERS_CACHE"]:
cache_path = os.environ[cache_var]
os.makedirs(cache_path, exist_ok=True)
import asyncio
import base64
import io
import json
import logging
from pathlib import Path
from typing import Dict, List, Optional, Set, Tuple
import cv2
import numpy as np
import torch
import uvicorn
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from hydra import compose, initialize
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from PIL import Image
# Import your modules
import sys
from pathlib import Path
# Add project root to path for src package imports
project_root = Path(__file__).parent
if str(project_root) not in sys.path:
sys.path.insert(0, str(project_root))
from src.agent import Agent
from src.csgo.web_action_processing import WebCSGOAction, web_keys_to_csgo_action_names
from src.envs import WorldModelEnv
from src.game.web_play_env import WebPlayEnv
from src.utils import extract_state_dict
from config_web import web_config
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables
app = FastAPI(title="Diamond CSGO AI Player")
# Set safe defaults for headless CI/Spaces environments
os.environ.setdefault("SDL_VIDEODRIVER", "dummy")
os.environ.setdefault("SDL_AUDIODRIVER", "dummy")
os.environ.setdefault("PYGAME_HIDE_SUPPORT_PROMPT", "1")
# Environment variables already set at top of file
connected_clients: Set[WebSocket] = set()
class WebKeyMap:
"""Map web key codes to pygame-like keys for CSGO actions"""
WEB_TO_CSGO = {
'KeyW': 'w',
'KeyA': 'a',
'KeyS': 's',
'KeyD': 'd',
'Space': 'space',
'ControlLeft': 'left ctrl',
'ShiftLeft': 'left shift',
'Digit1': '1',
'Digit2': '2',
'Digit3': '3',
'KeyR': 'r',
'ArrowUp': 'camera_up',
'ArrowDown': 'camera_down',
'ArrowLeft': 'camera_left',
'ArrowRight': 'camera_right'
}
class WebGameEngine:
"""Web-compatible game engine that replaces pygame functionality"""
def __init__(self):
self.play_env: Optional[WebPlayEnv] = None
self.obs = None
self.running = False
self.game_started = False
# Allow runtime tuning via environment variables
import os
self.fps = int(os.getenv("DISPLAY_FPS", "30")) # Display FPS
# Increase default AI inference FPS; can be overridden with AI_FPS env var
self.ai_fps = int(os.getenv("AI_FPS", "15"))
# Send every Nth frame to the browser (1 = send all frames)
self.send_every = int(os.getenv("DISPLAY_SKIP", "1"))
self.frame_count = 0
self.ai_frame_count = 0
self.last_ai_time = 0
self.start_time = 0 # Track when AI started for proper FPS calculation
self.pressed_keys: Set[str] = set()
self.mouse_x = 0
self.mouse_y = 0
self.l_click = False
self.r_click = False
self.should_reset = False
self.cached_obs = None # Cache last observation for frame skipping
self.first_inference_done = False # Track if first inference completed
self.models_ready = False # Track if models are loaded
self.download_progress = 0 # Track download progress (0-100)
self.loading_status = "Initializing..." # Loading status message
self.actor_critic_loaded = False # Track if actor_critic was loaded with trained weights
import time
self.time_module = time
# Async inference queues to decouple GPU work from websocket I/O
import asyncio
self._in_queue: asyncio.Queue = asyncio.Queue(maxsize=1)
self._out_queue: asyncio.Queue = asyncio.Queue(maxsize=1)
# Flag to start worker once models are ready
self._worker_started = False
async def _load_model_from_url_async(self, agent, device):
"""Load model from URL using torch.hub (HF Spaces compatible)"""
import asyncio
import concurrent.futures
def load_model_weights():
"""Load model weights in thread pool to avoid blocking"""
try:
logger.info("Loading model using torch.hub.load_state_dict_from_url...")
self.loading_status = "Downloading model..."
self.download_progress = 10
model_url = "https://huggingface.co/Etadingrui/diamond-1B/resolve/main/agent_epoch_00003.pt"
# Use torch.hub to download and load state dict with custom cache dir
logger.info(f"Loading state dict from {model_url}")
# Set custom cache directory that we have write permissions for
cache_dir = os.path.join(tempfile.gettempdir(), "torch_cache")
os.makedirs(cache_dir, exist_ok=True)
# Use torch.hub with custom cache directory
state_dict = torch.hub.load_state_dict_from_url(
model_url,
map_location=device,
model_dir=cache_dir,
check_hash=False # Skip hash check for faster loading
)
self.download_progress = 60
self.loading_status = "Loading model weights into agent..."
logger.info("State dict loaded, applying to agent...")
# Check what components are in the state dict
has_actor_critic = any(k.startswith('actor_critic.') for k in state_dict.keys())
has_denoiser = any(k.startswith('denoiser.') for k in state_dict.keys())
has_upsampler = any(k.startswith('upsampler.') for k in state_dict.keys())
logger.info(f"Model components found - actor_critic: {has_actor_critic}, denoiser: {has_denoiser}, upsampler: {has_upsampler}")
# Load state dict into agent
agent.load_state_dict(state_dict, load_actor_critic=has_actor_critic)
# Track if actor_critic was actually loaded with trained weights
self.actor_critic_loaded = has_actor_critic
# For HF Spaces demo, if no actor_critic, we can still show the world model
if not has_actor_critic:
logger.warning("No actor_critic weights found - world model will work but AI won't play")
logger.info("Users can still interact and see the world model predictions")
self.download_progress = 100
self.loading_status = "Model loaded successfully!"
logger.info("All model weights loaded successfully!")
return True
except Exception as e:
logger.error(f"Failed to load model: {e}")
import traceback
traceback.print_exc()
return False
# Run in thread pool to avoid blocking with timeout
loop = asyncio.get_event_loop()
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
# Add timeout for model loading (5 minutes max)
future = loop.run_in_executor(executor, load_model_weights)
success = await asyncio.wait_for(future, timeout=300.0) # 5 minute timeout
return success
except asyncio.TimeoutError:
logger.error("Model loading timed out after 5 minutes")
self.loading_status = "Model loading timed out - using dummy mode"
return False
except Exception as e:
logger.error(f"Error in model loading executor: {e}")
self.loading_status = f"Model loading error: {str(e)[:50]}..."
return False
async def initialize_models(self):
"""Initialize the AI models and environment"""
try:
import torch
logger.info("Initializing models...")
# Setup environment and paths
web_config.setup_environment_variables()
web_config.create_default_configs()
config_path = web_config.get_config_path()
logger.info(f"Using config path: {config_path}")
# Convert to relative path for Hydra
import os
relative_config_path = os.path.relpath(config_path)
logger.info(f"Relative config path: {relative_config_path}")
with initialize(version_base="1.3", config_path=relative_config_path):
cfg = compose(config_name="trainer")
# Override config for deployment
cfg.agent = OmegaConf.load(config_path / "agent" / "csgo.yaml")
cfg.env = OmegaConf.load(config_path / "env" / "csgo.yaml")
# Use GPU if available, otherwise fall back to CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Log GPU availability and CUDA info for debugging
if torch.cuda.is_available():
logger.info(f"CUDA available: {torch.cuda.is_available()}")
logger.info(f"GPU device count: {torch.cuda.device_count()}")
logger.info(f"Current GPU: {torch.cuda.get_device_name(0)}")
logger.info(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
logger.info("๐ GPU acceleration enabled!")
else:
logger.info("CUDA not available, using CPU mode")
# Initialize agent first
num_actions = cfg.env.num_actions
agent = Agent(instantiate(cfg.agent, num_actions=num_actions)).to(device).eval()
# Get spawn directory
spawn_dir = web_config.get_spawn_dir()
# Try to load checkpoint (remote first, then local, then dummy mode)
try:
# First try to load from Hugging Face Hub using torch.hub
logger.info("Loading model from Hugging Face Hub with torch.hub...")
success = await self._load_model_from_url_async(agent, device)
if success:
logger.info("Successfully loaded checkpoint from HF Hub")
else:
# Fallback to local checkpoint if available
logger.error("Failed to load from HF Hub! Check the detailed error above.")
checkpoint_path = web_config.get_checkpoint_path()
if checkpoint_path.exists():
logger.info(f"Loading local checkpoint: {checkpoint_path}")
self.loading_status = "Loading local checkpoint..."
agent.load(checkpoint_path)
logger.info(f"Successfully loaded local checkpoint: {checkpoint_path}")
# Assume local checkpoint has actor_critic weights (may need verification)
self.actor_critic_loaded = True
else:
logger.error(f"No local checkpoint found at: {checkpoint_path}")
raise FileNotFoundError("No model checkpoint available (local or remote)")
except Exception as e:
logger.error(f"Failed to load any checkpoint: {e}")
self._init_dummy_mode()
self.actor_critic_loaded = False # No actor_critic in dummy mode
return True
# Initialize world model environment
try:
sl = cfg.agent.denoiser.inner_model.num_steps_conditioning
if agent.upsampler is not None:
sl = max(sl, cfg.agent.upsampler.inner_model.num_steps_conditioning)
wm_env_cfg = instantiate(cfg.world_model_env, num_batches_to_preload=1)
wm_env = WorldModelEnv(agent.denoiser, agent.upsampler, agent.rew_end_model,
spawn_dir, 1, sl, wm_env_cfg, return_denoising_trajectory=True)
# Create play environment
self.play_env = WebPlayEnv(agent, wm_env, False, False, False)
# Verify actor-critic is loaded and ready for inference
if agent.actor_critic is not None and self.actor_critic_loaded:
logger.info(f"Actor-critic model loaded with {agent.actor_critic.lstm_dim} LSTM dimensions")
logger.info(f"Actor-critic device: {agent.actor_critic.device}")
# Force AI control for web demo
self.play_env.is_human_player = False
logger.info("โ
WebPlayEnv set to AI control mode - ready for inference!")
elif agent.actor_critic is not None and not self.actor_critic_loaded:
logger.warning("โ ๏ธ Actor-critic model exists but has no trained weights!")
logger.info("๐ฎ Demo will work in world-model mode (human input + world simulation)")
# Still allow human input to drive the world model
self.play_env.is_human_player = True
self.play_env.human_input_override = True # Always use human input
logger.info("WebPlayEnv set to human control mode (no trained weights)")
else:
logger.warning("โ No actor-critic model found - AI inference will not work!")
self.play_env.is_human_player = True
logger.info("WebPlayEnv set to human control mode (fallback)")
# Set up cache directories for HF Spaces compatibility
import os, pwd, tempfile
try:
pwd.getpwuid(os.getuid())
except KeyError:
os.environ["USER"] = "huggingface"
# Set writable cache directories for HF Spaces
cache_dir = tempfile.gettempdir()
os.environ.setdefault("TRITON_CACHE_DIR", os.path.join(cache_dir, "triton"))
os.environ.setdefault("TORCH_COMPILE_DEBUG_DIR", os.path.join(cache_dir, "torch_compile"))
# Create cache directories
for cache_var in ["TRITON_CACHE_DIR", "TORCH_COMPILE_DEBUG_DIR"]:
cache_path = os.environ[cache_var]
os.makedirs(cache_path, exist_ok=True)
# Enable torch.compile with proper error handling for HF Spaces
# Check if we're on HF Spaces (common indicators)
is_hf_spaces = any([
'space_id' in os.environ,
'huggingface' in os.environ.get('USER', '').lower(),
'/app' in os.getcwd()
])
# Enable compilation by default everywhere, including HF Spaces
# Can disable with DISABLE_TORCH_COMPILE=1 if needed
disable_compile = os.getenv("DISABLE_TORCH_COMPILE", "0") == "1"
compile_enabled = (device.type == "cuda" and not disable_compile)
if compile_enabled:
logger.info("Compiling models for faster inference (like play.py --compile)...")
try:
wm_env.predict_next_obs = torch.compile(wm_env.predict_next_obs, mode="reduce-overhead")
if wm_env.upsample_next_obs is not None:
wm_env.upsample_next_obs = torch.compile(wm_env.upsample_next_obs, mode="reduce-overhead")
logger.info("โ
Model compilation enabled successfully!")
except Exception as e:
logger.warning(f"โ ๏ธ Model compilation failed: {e}")
logger.info("Continuing without model compilation...")
else:
if disable_compile:
reason = "DISABLE_TORCH_COMPILE=1 set"
else:
reason = "no CUDA device available"
logger.info(f"Model compilation disabled ({reason}). Models will run uncompiled.")
# Reset environment
self.obs, _ = self.play_env.reset()
self.cached_obs = self.obs # Initialize cache
logger.info("Models initialized successfully!")
logger.info(f"Initial observation shape: {self.obs.shape if self.obs is not None else 'None'}")
self.models_ready = True
self.loading_status = "Ready!"
return True
except Exception as e:
logger.error(f"Failed to initialize world model environment: {e}")
self._init_dummy_mode()
self.actor_critic_loaded = False # No actor_critic in dummy mode
self.models_ready = True
self.loading_status = "Using dummy mode"
return True
except Exception as e:
logger.error(f"Failed to initialize models: {e}")
import traceback
traceback.print_exc()
self._init_dummy_mode()
self.actor_critic_loaded = False # No actor_critic in dummy mode
self.models_ready = True
self.loading_status = "Error - using dummy mode"
return True
def _init_dummy_mode(self):
"""Initialize dummy mode for testing without models"""
logger.info("Initializing dummy mode...")
# Create a test observation
height, width = 150, 600
img_array = np.zeros((height, width, 3), dtype=np.uint8)
# Add test pattern
for y in range(height):
for x in range(width):
img_array[y, x, 0] = (x % 256) # Red gradient
img_array[y, x, 1] = (y % 256) # Green gradient
img_array[y, x, 2] = ((x + y) % 256) # Blue pattern
# Convert to torch tensor in expected format [-1, 1]
tensor = torch.from_numpy(img_array).float().permute(2, 0, 1) # CHW format
tensor = tensor.div(255).mul(2).sub(1) # Convert to [-1, 1] range
tensor = tensor.unsqueeze(0) # Add batch dimension
self.obs = tensor
self.play_env = None # No real environment in dummy mode
logger.info("Dummy mode initialized with test pattern")
def step_environment(self):
"""Step the environment with current input state (with intelligent frame skipping)"""
if self.play_env is None:
# Dummy mode - just return current observation
return self.obs, 0.0, False, False, {"mode": "dummy"}
try:
# Check if reset is requested
if self.should_reset:
self.reset_environment()
self.should_reset = False
self.last_ai_time = self.time_module.time() # Reset AI timer
return self.obs, 0.0, False, False, {"reset": True}
current_time = self.time_module.time()
# Push task to inference queue if needed
time_since_last_ai = current_time - self.last_ai_time
should_run_ai = time_since_last_ai >= (1.0 / self.ai_fps)
if should_run_ai and self._in_queue.empty():
# Snapshot web input state
web_state = dict(
pressed_keys=set(self.pressed_keys),
mouse_x=self.mouse_x,
mouse_y=self.mouse_y,
l_click=self.l_click,
r_click=self.r_click,
)
asyncio.create_task(self._in_queue.put((self.obs, web_state)))
# Check for completed inference
if not self._out_queue.empty():
(next_obs, reward, done, truncated, info, inference_time) = self._out_queue.get_nowait()
# Log first inference completion
if not self.first_inference_done:
self.first_inference_done = True
logger.info(f"First AI inference completed in {inference_time:.2f}s - subsequent inferences will be faster!")
# Cache the new observation and update timing
self.cached_obs = next_obs
self.last_ai_time = current_time
self.ai_frame_count += 1
# Add AI performance info
info = info or {}
info["ai_inference"] = True
# Calculate proper AI FPS: frames / elapsed time since start
elapsed_time = current_time - self.start_time
if elapsed_time > 0 and self.ai_frame_count > 0:
ai_fps = self.ai_frame_count / elapsed_time
# Cap at reasonable maximum (shouldn't exceed 100 FPS for AI inference)
info["ai_fps"] = min(ai_fps, 100.0)
else:
info["ai_fps"] = 0
info["inference_time"] = inference_time
return next_obs, reward, done, truncated, info
else:
# Use cached observation for smoother display without AI overhead
obs_to_return = self.cached_obs if self.cached_obs is not None else self.obs
# Calculate AI FPS for cached frames too
elapsed_time = current_time - self.start_time
if elapsed_time > 0 and self.ai_frame_count > 0:
ai_fps = min(self.ai_frame_count / elapsed_time, 100.0) # Cap at 100 FPS
else:
ai_fps = 0
return obs_to_return, 0.0, False, False, {"cached": True, "ai_fps": ai_fps}
except Exception as e:
logger.error(f"Error stepping environment: {e}")
obs_to_return = self.cached_obs if self.cached_obs is not None else self.obs
return obs_to_return, 0.0, False, False, {"error": str(e)}
def reset_environment(self):
"""Reset the environment"""
try:
if self.play_env is not None:
self.obs, _ = self.play_env.reset()
self.cached_obs = self.obs # Update cache
logger.info("Environment reset successfully")
else:
# Dummy mode - recreate test pattern
self._init_dummy_mode()
self.cached_obs = self.obs # Update cache
logger.info("Dummy environment reset")
except Exception as e:
logger.error(f"Error resetting environment: {e}")
def request_reset(self):
"""Request environment reset on next step"""
self.should_reset = True
logger.info("Environment reset requested")
def start_game(self):
"""Start the game"""
self.game_started = True
self.start_time = self.time_module.time() # Reset start time for FPS calculation
self.ai_frame_count = 0 # Reset AI frame count
logger.info("Game started")
def pause_game(self):
"""Pause/stop the game"""
self.game_started = False
logger.info("Game paused")
def obs_to_base64(self, obs: torch.Tensor) -> str:
"""Convert observation tensor to base64 image for web display"""
if obs is None:
return ""
try:
# Convert tensor to PIL Image
if obs.ndim == 4 and obs.size(0) == 1:
img_array = obs[0].add(1).div(2).mul(255).byte().permute(1, 2, 0).cpu().numpy()
else:
img_array = obs.add(1).div(2).mul(255).byte().permute(1, 2, 0).cpu().numpy()
img = Image.fromarray(img_array)
# Resize for web display to match canvas size (optimized)
img = img.resize((600, 150), Image.NEAREST)
# Choose codec via env var for flexibility (jpeg|png)
codec = os.getenv("IMG_CODEC", "jpeg").lower()
img_np = np.array(img)[:, :, ::-1] # RGB -> BGR
if codec == "png":
success, encoded_img = cv2.imencode('.png', img_np, [cv2.IMWRITE_PNG_COMPRESSION, 1])
mime = 'png'
else:
# JPEG with quality 70 for speed/size balance
success, encoded_img = cv2.imencode('.jpg', img_np, [cv2.IMWRITE_JPEG_QUALITY, 70])
mime = 'jpeg'
if not success:
return ""
img_str = base64.b64encode(encoded_img).decode()
return f"data:image/{mime};base64,{img_str}"
except Exception as e:
logger.error(f"Error converting observation to base64: {e}")
return ""
# ------------------------------------------------------------------
# Faster binary encoder (JPEG/PNG) with OpenCV โ no Pillow involved
# ------------------------------------------------------------------
def obs_to_bytes(self, obs: torch.Tensor) -> Tuple[bytes, str]:
"""Return encoded image bytes and MIME (image/jpeg or image/png)."""
if obs is None:
return b"", "image/jpeg"
try:
# Keep operations on GPU as long as possible (like play.py)
if obs.ndim == 4 and obs.size(0) == 1:
img_tensor = obs[0]
else:
img_tensor = obs
# Resize on GPU first (faster than CPU resize)
img_tensor = torch.nn.functional.interpolate(
img_tensor.unsqueeze(0), size=(75, 300), mode='nearest'
).squeeze(0)
# Convert to uint8 on GPU, then transfer to CPU once
img_np = (img_tensor.add(1).mul(127.5).clamp(0, 255).byte()
.permute(1, 2, 0).contiguous().cpu().numpy()) # HWC uint8
# Encode with OpenCV
import os
codec = os.getenv("IMG_CODEC", "jpeg").lower()
if codec == "png":
ok, enc = cv2.imencode('.png', img_np, [cv2.IMWRITE_PNG_COMPRESSION, 1])
mime = "image/png"
else:
ok, enc = cv2.imencode('.jpg', img_np, [cv2.IMWRITE_JPEG_QUALITY, 75])
mime = "image/jpeg"
if not ok:
return b"", mime
return enc.tobytes(), mime
except Exception as e:
logger.error(f"obs_to_bytes error: {e}")
return b"", "image/jpeg"
async def game_loop(self):
"""Main game loop that runs continuously"""
self.running = True
# Start inference worker once, when models are ready
while self.running:
loop_start_time = self.time_module.time()
# Spawn worker lazily after models initialized
if self.models_ready and not self._worker_started:
asyncio.create_task(self._inference_worker())
self._worker_started = True
try:
# Check if models are ready
if not self.models_ready:
# Send loading status to clients
if connected_clients:
loading_data = {
'type': 'loading',
'status': self.loading_status,
'progress': self.download_progress,
'ready': False
}
disconnected = set()
for client in connected_clients.copy():
try:
await client.send_text(json.dumps(loading_data))
except:
disconnected.add(client)
connected_clients.difference_update(disconnected)
await asyncio.sleep(0.5) # Check every 500ms during loading
continue
# Always send frames, but only step environment if game is started
should_send_frame = True
if not self.game_started:
# Game not started - just send current observation without stepping
if self.obs is not None and connected_clients:
should_send_frame = True
else:
should_send_frame = False
await asyncio.sleep(0.1)
else:
# Game is started - step environment
if self.play_env is None:
await asyncio.sleep(0.1)
continue
# Step environment with current input state
next_obs, reward, done, truncated, info = self.step_environment()
if done or truncated:
# Auto-reset when episode ends
self.reset_environment()
else:
self.obs = next_obs
# Send frame to all connected clients (regardless of game state)
if should_send_frame and connected_clients and self.obs is not None and (self.frame_count % self.send_every == 0):
# Set default values for when game isn't running
if not self.game_started:
reward = 0.0
info = {"waiting": True}
# If game is started, reward and info should be set above
# Prefer binary frames if client agrees (feature flag)
use_binary = os.getenv("BINARY_WS", "0") == "1"
if use_binary:
img_bytes, mime = self.obs_to_bytes(self.obs)
meta = {
'type': 'frame_meta',
'mime': mime,
'frame_count': self.frame_count,
'reward': float(reward.item()) if hasattr(reward, 'item') else float(reward) if reward is not None else 0.0,
'info': str(info) if info else "",
'ai_fps': info.get('ai_fps', 0) if isinstance(info, dict) else 0,
'is_ai_frame': info.get('ai_inference', False) if isinstance(info, dict) else False
}
disconnected = set()
for client in connected_clients.copy():
try:
await client.send_text(json.dumps(meta))
await client.send_bytes(img_bytes)
except:
disconnected.add(client)
connected_clients.difference_update(disconnected)
else:
# Fallback to base64 JSON
image_data = self.obs_to_base64(self.obs)
if self.frame_count < 5:
logger.info(
f"Frame {self.frame_count}: base64_len={len(image_data)} ai={info.get('ai_fps',0):.1f}")
frame_data = {
'type': 'frame',
'image': image_data,
'frame_count': self.frame_count,
'reward': float(reward.item()) if hasattr(reward, 'item') else float(reward) if reward is not None else 0.0,
'info': str(info) if info else "",
'ai_fps': info.get('ai_fps', 0) if isinstance(info, dict) else 0,
'is_ai_frame': info.get('ai_inference', False) if isinstance(info, dict) else False
}
disconnected = set()
for client in connected_clients.copy():
try:
await client.send_text(json.dumps(frame_data))
except:
disconnected.add(client)
connected_clients.difference_update(disconnected)
self.frame_count += 1
# Adaptive sleep so we don't waste idle time when GPU faster than display FPS
loop_elapsed = self.time_module.time() - loop_start_time
sleep_for = max((1.0 / self.fps) - loop_elapsed, 0)
if sleep_for:
await asyncio.sleep(sleep_for)
except Exception as e:
logger.error(f"Error in game loop: {e}")
await asyncio.sleep(0.1)
async def _inference_worker(self):
"""Runs AI inference in background to avoid blocking I/O."""
logger.info("Inference worker started")
next_inference_time = self.time_module.time()
while True:
obs, web_state = await self._in_queue.get()
# Timing control: maintain steady AI_FPS like play.py's clock.tick()
now = self.time_module.time()
if now < next_inference_time:
await asyncio.sleep(next_inference_time - now)
next_inference_time += 1.0 / self.ai_fps
# Run inference directly in asyncio (not thread pool) with autocast for speed
try:
start = self.time_module.time()
# Use FP16 autocast for faster inference (like play.py can do with modern GPUs)
# Use newer autocast API to avoid deprecation warning
import torch
with torch.amp.autocast('cuda', dtype=torch.float16, enabled=torch.cuda.is_available()):
res = self.play_env.step_from_web_input(**web_state)
infer_t = self.time_module.time() - start
await self._out_queue.put((*res, infer_t))
except Exception as e:
logger.error(f"Inference worker error: {e}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
# Create a proper dummy result with correct tensor properties
try:
if self.obs is not None and hasattr(self.obs, 'shape') and hasattr(self.obs, 'device'):
dummy_obs = self.obs.clone()
else:
# Fallback to a standard tensor on the right device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dummy_obs = torch.zeros(1, 3, 150, 600, device=device)
await self._out_queue.put((dummy_obs, 0.0, False, False, {"error": str(e)}, 0.0))
except Exception as e2:
logger.error(f"Error creating dummy result: {e2}")
# Last resort - create CPU tensor
dummy_obs = torch.zeros(1, 3, 150, 600)
await self._out_queue.put((dummy_obs, 0.0, False, False, {"error": str(e)}, 0.0))
# Global game engine instance
game_engine = WebGameEngine()
@app.on_event("startup")
async def startup_event():
"""Initialize models when the app starts"""
# Start the game loop immediately (it will handle loading state)
asyncio.create_task(game_engine.game_loop())
# Initialize models in background (non-blocking)
asyncio.create_task(game_engine.initialize_models())
@app.get("/", response_class=HTMLResponse)
async def get_homepage():
"""Serve the main game interface"""
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Physics-informed BEV World Model</title>
<style>
body {
margin: 0;
padding: 20px;
background: #1a1a1a;
color: white;
font-family: 'Courier New', monospace;
text-align: center;
}
#gameCanvas {
border: 2px solid #00ff00;
background: #000;
margin: 20px auto;
display: block;
}
#controls {
margin: 20px;
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
max-width: 800px;
margin: 20px auto;
}
.control-section {
background: #2a2a2a;
padding: 15px;
border-radius: 8px;
border: 1px solid #444;
}
.key-display {
background: #333;
border: 1px solid #555;
padding: 5px 10px;
margin: 2px;
border-radius: 4px;
display: inline-block;
min-width: 30px;
}
.key-pressed {
background: #00ff00;
color: #000;
}
#status {
margin: 10px;
padding: 10px;
background: #2a2a2a;
border-radius: 4px;
}
.info {
color: #00ff00;
margin: 5px 0;
}
</style>
</head>
<body>
<h1>๐ฎ Physics-informed BEV World Model</h1>
<p><strong>Click the game canvas to start playing!</strong> Use ESC to pause, Enter to reset environment.</p>
<p id="loadingIndicator" style="color: #ffff00; display: none;">๐ Starting AI inference... This may take 5-15 seconds on first run.</p>
<!-- Model Download Progress -->
<div id="downloadSection" style="display: none; margin: 20px;">
<p id="downloadStatus" style="color: #ffaa00; margin: 10px 0;">๐ฅ Downloading AI model...</p>
<div style="background: #333; border-radius: 10px; padding: 3px; width: 100%; max-width: 600px; margin: 0 auto;">
<div id="progressBar" style="background: linear-gradient(90deg, #00ff00, #88ff00); height: 20px; border-radius: 7px; width: 0%; transition: width 0.3s;"></div>
</div>
<p id="progressText" style="color: #aaa; font-size: 14px; margin: 5px 0;">0% - Initializing...</p>
</div>
<canvas id="gameCanvas" width="600" height="150" tabindex="0"></canvas>
<div id="status">
<div class="info">Status: <span id="connectionStatus">Connecting...</span></div>
<div class="info">Game: <span id="gameStatus">Click to Start</span></div>
<div class="info">Frame: <span id="frameCount">0</span> | AI FPS: <span id="aiFps">0</span></div>
<div class="info">Reward: <span id="reward">0</span></div>
</div>
<div id="controls">
<div class="control-section">
<h3>Movement</h3>
<div>
<span class="key-display" id="key-w">W</span> Forward<br>
<span class="key-display" id="key-a">A</span> Left
<span class="key-display" id="key-s">S</span> Back
<span class="key-display" id="key-d">D</span> Right<br>
<span class="key-display" id="key-space">Space</span> Jump
<span class="key-display" id="key-ctrl">Ctrl</span> Crouch
<span class="key-display" id="key-shift">Shift</span> Walk
</div>
</div>
<div class="control-section">
<h3>Actions</h3>
<div>
<span class="key-display" id="key-1">1</span> Weapon 1<br>
<span class="key-display" id="key-2">2</span> Weapon 2
<span class="key-display" id="key-3">3</span> Weapon 3<br>
<span class="key-display" id="key-r">R</span> Reload<br>
<span class="key-display" id="key-arrows">โโโโ</span> Camera<br>
<span class="key-display" id="key-enter">Enter</span> Reset Game<br>
<span class="key-display" id="key-esc">Esc</span> Pause/Quit
</div>
</div>
</div>
<script>
const canvas = document.getElementById('gameCanvas');
const ctx = canvas.getContext('2d');
const statusEl = document.getElementById('connectionStatus');
const gameStatusEl = document.getElementById('gameStatus');
const frameEl = document.getElementById('frameCount');
const aiFpsEl = document.getElementById('aiFps');
const rewardEl = document.getElementById('reward');
const loadingEl = document.getElementById('loadingIndicator');
const downloadSectionEl = document.getElementById('downloadSection');
const downloadStatusEl = document.getElementById('downloadStatus');
const progressBarEl = document.getElementById('progressBar');
const progressTextEl = document.getElementById('progressText');
let ws = null;
let pressedKeys = new Set();
let gameStarted = false;
// Key mapping
const keyDisplayMap = {
'KeyW': 'key-w',
'KeyA': 'key-a',
'KeyS': 'key-s',
'KeyD': 'key-d',
'Space': 'key-space',
'ControlLeft': 'key-ctrl',
'ShiftLeft': 'key-shift',
'Digit1': 'key-1',
'Digit2': 'key-2',
'Digit3': 'key-3',
'KeyR': 'key-r',
'ArrowUp': 'key-arrows',
'ArrowDown': 'key-arrows',
'ArrowLeft': 'key-arrows',
'ArrowRight': 'key-arrows',
'Enter': 'key-enter',
'Escape': 'key-esc'
};
function connectWebSocket() {
const protocol = window.location.protocol === 'https:' ? 'wss:' : 'ws:';
const wsUrl = `${protocol}//${window.location.host}/ws`;
ws = new WebSocket(wsUrl);
ws.onopen = function(event) {
statusEl.textContent = 'Connected';
statusEl.style.color = '#00ff00';
// If user already clicked to start before WS was ready, send start now
if (gameStarted) {
ws.send(JSON.stringify({ type: 'start' }));
}
};
ws.onmessage = function(event) {
const data = JSON.parse(event.data);
if (data.type === 'loading') {
// Handle loading status
downloadSectionEl.style.display = 'block';
downloadStatusEl.textContent = data.status;
if (data.progress !== undefined) {
progressBarEl.style.width = data.progress + '%';
progressTextEl.textContent = data.progress + '% - ' + data.status;
} else {
progressTextEl.textContent = data.status;
}
gameStatusEl.textContent = 'Loading Models...';
gameStatusEl.style.color = '#ffaa00';
} else if (data.type === 'frame') {
// Hide loading indicators once we get frames
downloadSectionEl.style.display = 'none';
// Update frame display
if (data.image) {
const img = new Image();
img.onload = function() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
};
img.src = data.image;
}
frameEl.textContent = data.frame_count;
rewardEl.textContent = data.reward.toFixed(2);
// Update AI FPS display and hide loading indicator once AI starts
if (data.ai_fps !== undefined && data.ai_fps !== null) {
// Ensure FPS value is reasonable
const aiFps = Math.min(Math.max(data.ai_fps, 0), 100);
aiFpsEl.textContent = aiFps.toFixed(1);
// Color code AI FPS for performance indication
if (aiFps >= 8) {
aiFpsEl.style.color = '#00ff00'; // Green for good performance
} else if (aiFps >= 5) {
aiFpsEl.style.color = '#ffff00'; // Yellow for moderate performance
} else if (aiFps > 0) {
aiFpsEl.style.color = '#ff0000'; // Red for poor performance
} else {
aiFpsEl.style.color = '#888888'; // Gray for inactive
}
// Hide loading indicator once AI inference starts working
if (aiFps > 0 && gameStarted) {
loadingEl.style.display = 'none';
gameStatusEl.textContent = 'Playing';
gameStatusEl.style.color = '#00ff00';
}
}
}
};
ws.onclose = function(event) {
statusEl.textContent = 'Disconnected';
statusEl.style.color = '#ff0000';
setTimeout(connectWebSocket, 1000); // Reconnect after 1 second
};
ws.onerror = function(event) {
statusEl.textContent = 'Error';
statusEl.style.color = '#ff0000';
};
}
function sendKeyState() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'keys',
keys: Array.from(pressedKeys)
}));
}
}
function startGame() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'start'
}));
gameStarted = true;
gameStatusEl.textContent = 'Starting AI...';
gameStatusEl.style.color = '#ffff00';
loadingEl.style.display = 'block';
console.log('Game started');
}
}
function pauseGame() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'pause'
}));
gameStarted = false;
gameStatusEl.textContent = 'Paused - Click to Resume';
gameStatusEl.style.color = '#ffff00';
console.log('Game paused');
}
}
function updateKeyDisplay() {
// Reset all key displays
Object.values(keyDisplayMap).forEach(id => {
const el = document.getElementById(id);
if (el) el.classList.remove('key-pressed');
});
// Highlight pressed keys
pressedKeys.forEach(key => {
const displayId = keyDisplayMap[key];
if (displayId) {
const el = document.getElementById(displayId);
if (el) el.classList.add('key-pressed');
}
});
}
// Focus canvas and handle keyboard events
canvas.addEventListener('click', () => {
canvas.focus();
if (!gameStarted) {
// Queue start locally and send immediately if WS is open
gameStarted = true;
gameStatusEl.textContent = 'Starting AI...';
gameStatusEl.style.color = '#ffff00';
loadingEl.style.display = 'block';
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({ type: 'start' }));
}
}
});
canvas.addEventListener('keydown', (event) => {
event.preventDefault();
// Handle special keys
if (event.code === 'Enter') {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'reset'
}));
console.log('Environment reset requested');
}
// Add to pressedKeys for visual feedback
pressedKeys.add(event.code);
updateKeyDisplay();
// Remove Enter from pressedKeys after a short delay for visual feedback
setTimeout(() => {
pressedKeys.delete(event.code);
updateKeyDisplay();
}, 200);
} else if (event.code === 'Escape') {
pauseGame();
// Add to pressedKeys for visual feedback
pressedKeys.add(event.code);
updateKeyDisplay();
// Remove ESC from pressedKeys after a short delay for visual feedback
setTimeout(() => {
pressedKeys.delete(event.code);
updateKeyDisplay();
}, 200);
} else {
// Only send game keys if game is started
if (gameStarted) {
pressedKeys.add(event.code);
updateKeyDisplay();
sendKeyState();
}
}
});
canvas.addEventListener('keyup', (event) => {
event.preventDefault();
// Don't handle special keys release (handled in keydown with timeout)
if (event.code !== 'Enter' && event.code !== 'Escape') {
if (gameStarted) {
pressedKeys.delete(event.code);
updateKeyDisplay();
sendKeyState();
}
}
});
// Handle mouse events for clicks
canvas.addEventListener('mousedown', (event) => {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'mouse',
button: event.button,
action: 'down',
x: event.offsetX,
y: event.offsetY
}));
}
});
canvas.addEventListener('mouseup', (event) => {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'mouse',
button: event.button,
action: 'up',
x: event.offsetX,
y: event.offsetY
}));
}
});
// Initialize
connectWebSocket();
canvas.focus();
</script>
</body>
</html>
"""
return html_content
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
"""Handle WebSocket connections for real-time game communication"""
await websocket.accept()
connected_clients.add(websocket)
try:
while True:
# Receive messages from client
data = await websocket.receive_text()
message = json.loads(data)
if message['type'] == 'keys':
# Update pressed keys
game_engine.pressed_keys = set(message['keys'])
elif message['type'] == 'reset':
# Handle environment reset request
game_engine.request_reset()
elif message['type'] == 'start':
# Handle game start request
game_engine.start_game()
elif message['type'] == 'pause':
# Handle game pause request
game_engine.pause_game()
elif message['type'] == 'mouse':
# Handle mouse events
if message['action'] == 'down':
if message['button'] == 0: # Left click
game_engine.l_click = True
elif message['button'] == 2: # Right click
game_engine.r_click = True
elif message['action'] == 'up':
if message['button'] == 0: # Left click
game_engine.l_click = False
elif message['button'] == 2: # Right click
game_engine.r_click = False
# Update mouse position (relative to canvas)
game_engine.mouse_x = message.get('x', 0) - 300 # Center at 300px
game_engine.mouse_y = message.get('y', 0) - 150 # Center at 150px
except WebSocketDisconnect:
connected_clients.discard(websocket)
except Exception as e:
logger.error(f"WebSocket error: {e}")
connected_clients.discard(websocket)
if __name__ == "__main__":
# For local development
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|