Spaces:
Sleeping
Sleeping
๐ HF Spaces GPU Acceleration Fix
โ Problem Identified:
Your T4 GPU wasn't being used because:
- Dockerfile disabled CUDA:
ENV CUDA_VISIBLE_DEVICES="" - Environment variable issues: OMP_NUM_THREADS causing warnings
- App running on CPU: Despite having T4 GPU hardware
โ Complete Fix Applied:
1. Dockerfile Changes
# REMOVED this line that was disabling GPU:
# ENV CUDA_VISIBLE_DEVICES=""
# Fixed environment variables:
ENV OMP_NUM_THREADS=2
ENV MKL_NUM_THREADS=2
2. App.py Improvements
- โ Fixed OMP_NUM_THREADS early: Set before any imports
- โ Improved GPU detection: Better logging and detection
- โ Cache directories: Moved setup to very beginning
3. Environment Variable Priority
Environment variables are now set in this order:
- Dockerfile - Base container settings
- app.py top - Python-level fixes (before imports)
- HF Spaces - Runtime overrides
๐ฏ Expected Results After Fix:
Before (CPU mode):
INFO:app:Using device: cpu
INFO:app:CUDA not available, using CPU - this is normal for HF Spaces free tier
CPU 56%
GPU 0%
GPU VRAM 0/16 GB
After (GPU mode):
INFO:app:Using device: cuda
INFO:app:CUDA available: True
INFO:app:GPU device count: 1
INFO:app:Current GPU: Tesla T4
INFO:app:GPU memory: 15.1 GB
INFO:app:๐ GPU acceleration enabled!
Performance Improvement:
- CPU usage: Should drop to ~20-30%
- GPU usage: Should show 10-50% during AI inference
- GPU VRAM: Should show 2-4GB usage
- AI FPS: Should increase from ~2 FPS to 10+ FPS
๐ Deployment Steps:
Commit and push changes:
git add . git commit -m "Enable GPU acceleration for HF Spaces T4" git pushWait for rebuild (HF Spaces will restart automatically)
Check new logs for GPU detection:
INFO:app:๐ GPU acceleration enabled!Monitor system stats:
- GPU usage should now show activity
- GPU VRAM should show memory allocation
- Overall performance should be much faster
๐ Debugging Commands:
Check CUDA in container:
import torch
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"GPU count: {torch.cuda.device_count()}")
if torch.cuda.is_available():
print(f"GPU name: {torch.cuda.get_device_name(0)}")
Check environment variables:
import os
print(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
print(f"OMP_NUM_THREADS: {os.environ.get('OMP_NUM_THREADS')}")
๐จ If GPU Still Not Working:
1. Verify HF Spaces Hardware:
- Check your Space settings
- Ensure "T4 small" or "T4 medium" is selected
- Free tier doesn't have GPU access
2. Check Container Logs:
Look for these messages:
- โ
"๐ GPU acceleration enabled!" - โ
"CUDA not available"
3. Alternative: Force GPU Detection
If needed, add this debug code to app.py:
# Debug GPU detection
logger.info(f"Environment CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
logger.info(f"PyTorch CUDA compiled: {torch.version.cuda}")
logger.info(f"PyTorch version: {torch.__version__}")
โก Performance Optimization Tips:
For T4 GPU:
Enable model compilation (optional):
# Set environment variable in HF Spaces settings: ENABLE_TORCH_COMPILE=1Increase AI FPS (if needed):
# In app.py, line ~86: self.ai_fps = 15 # Increase from 10 to 15Monitor GPU memory:
- T4 has 16GB VRAM
- App should use 2-4GB
- Leave headroom for other processes
๐ฎ Expected User Experience:
- Faster loading: Models load to GPU memory
- Responsive gameplay: AI inference runs at 10+ FPS
- Smoother visuals: Display updates without lag
- Better AI performance: GPU acceleration improves model inference
Your HF Spaces deployment should now fully utilize the T4 GPU! ๐
๐ Monitor These Metrics:
- GPU Utilization: 10-50% during gameplay
- GPU Memory: 2-4GB allocated
- AI FPS: 10-15 FPS (displayed in web interface)
- CPU Usage: Should decrease to 20-30%
The game should feel much more responsive now! ๐