SoilFM2 Graph Tower (Joint Model)
Graph neural network component of SoilFM2 for soil microbiome analysis.
Developed by: Trent Northen, Lawrence Berkeley National Laboratory
Performance
| Task | Metric | Score |
|---|---|---|
| Metabolite Consumption | Accuracy | 78.72% |
| Pathway Prediction | Accuracy | 94.66% |
| Pathway Prediction | AUROC | 0.98 |
Architecture
- Hidden dimension: 512
- GNN layers: 4 (Multi-head attention)
- Dual task heads: Consumption (12-class) + Pathway (569-dim binary)
Quick Start
from soilfm2 import SoilFM2
model = SoilFM2.from_pretrained(
checkpoint_dir="YOUR_USERNAME/soilfm2-graph-tower-joint-v0.1",
literature_model="northenlab/soilfm-qwen2.5-14b-literature-cpt"
)
response = model.predict(
query="What metabolites boost nitrogen fixation?",
files={"16S": "community.tsv"}
)
## Files
- `pytorch_model.pt`: Model checkpoint (4.6 GB)
- `soilfm_integrated_kg.pt`: Knowledge graph (71 MB)
- `integrated_node_mappings.pkl`: Node mappings (54 MB)
- `config.json`: Model configuration
## License
MIT License
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support