deepdml's picture
Upload README.md with huggingface_hub
0342e69 verified
metadata
language:
  - ar
license: apache-2.0
base_model: deepdml/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
  - mozilla-foundation/common_voice_17_0
  - UBC-NLP/Casablanca
  - ymoslem/MediaSpeech
metrics:
  - wer
model-index:
  - name: Whisper Turbo ar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: google/fleurs
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 13.800603776415219

Whisper Turbo ar

This model is a fine-tuned version of deepdml/whisper-large-v3-turbo on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3375
  • Wer: 13.8006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.4123 0.2 1000 2.2390 19.6509
0.2413 0.4 2000 2.3998 17.6051
0.1324 0.6 3000 2.3918 16.3601
0.0796 0.8 4000 2.3270 14.7044
0.0311 1.0 5000 2.3375 13.8006

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Citation

@misc{deepdml/whisper-large-v3-turbo-ar-mix-norm,
      title={Fine-tuned Whisper turbo ASR model for speech recognition in Arabic},
      author={Jimenez, David},
      howpublished={\url{https://huggingface.co/deepdml/whisper-large-v3-turbo-ar-mix-norm}},
      year={2025}
    }