|
|
--- |
|
|
license: other |
|
|
task_categories: |
|
|
- text-generation |
|
|
- question-answering |
|
|
- text-classification |
|
|
- text-retrieval |
|
|
- text-ranking |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- security |
|
|
- cve |
|
|
- nvd |
|
|
- vulnerabilities |
|
|
- cybersecurity |
|
|
- cyber-security |
|
|
- cwe |
|
|
- cvss |
|
|
- jsonl |
|
|
- slimpajama |
|
|
- text |
|
|
- dataset |
|
|
- rag |
|
|
- retrieval |
|
|
- question-answering |
|
|
pretty_name: TanDev CVE Dataset |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
dataset_info: |
|
|
config_name: cve |
|
|
features: |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: meta |
|
|
struct: |
|
|
- name: source |
|
|
dtype: string |
|
|
- name: source_url |
|
|
dtype: string |
|
|
- name: license |
|
|
dtype: string |
|
|
- name: cve_id |
|
|
dtype: string |
|
|
- name: published |
|
|
dtype: string |
|
|
- name: last_modified |
|
|
dtype: string |
|
|
- name: cvss |
|
|
struct: |
|
|
- name: severity |
|
|
dtype: string |
|
|
- name: baseScore |
|
|
dtype: float64 |
|
|
- name: vectorString |
|
|
dtype: string |
|
|
- name: cwes |
|
|
list: string |
|
|
- name: num_cpes |
|
|
dtype: int64 |
|
|
- name: redpajama_set_name |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 379034186 |
|
|
num_examples: 316780 |
|
|
download_size: 90048495 |
|
|
dataset_size: 379034186 |
|
|
configs: |
|
|
- config_name: cve |
|
|
data_files: |
|
|
- split: train |
|
|
path: cve/train-* |
|
|
--- |
|
|
|
|
|
# TanDev CVE Dataset (NVD SlimPajama Corpus) |
|
|
|
|
|
A **SlimPajama‑style** corpus of CVE entries derived from the **NIST NVD (CVE 2.0)** data feeds (2002→present). Each row is a cleaned, single‑document text representation of a CVE with structured metadata for CVSS, CWE(s), timestamps, and a canonical NVD link—ready for **pretraining/continued‑pretraining**, **RAG**, **retrieval/evaluation**, and **downstream classifiers**. |
|
|
|
|
|
**Token count:** ~108.2M tokens. |
|
|
|
|
|
**License:** "TanDev Proprietary License — All Rights Reserved" |
|
|
|
|
|
> ⚠️ **Ethical and responsible use.** This dataset summarizes publicly available vulnerability records. Use responsibly for research, education, and defensive security; always validate against vendor advisories before operational use. |
|
|
|
|
|
--- |
|
|
|
|
|
## What’s in this release (Parquet) |
|
|
|
|
|
* **Primary delivery = Parquet** shards under `data/<config>/…/train-*.parquet` for fast streaming with `datasets`. |
|
|
* **Raw JSON** kept alongside in `raw/` for transparency and reproducibility. |
|
|
* **One named config:** `cve` (covers all available CVE rows). |
|
|
|
|
|
> If you previously downloaded `raw/cve.json[l]`, you can keep using it. The Hub will serve Parquet for `load_dataset(..., name="cve")` automatically. |
|
|
|
|
|
--- |
|
|
|
|
|
## Directory layout |
|
|
|
|
|
``` |
|
|
/ # dataset root (this card lives here as README.md) |
|
|
raw/ |
|
|
cve.json | cve.jsonl[.gz|.zst] # original export retained |
|
|
data/ |
|
|
cve/ |
|
|
default/1.0.0/train/ |
|
|
train-00000-of-XXXXX.parquet |
|
|
train-00001-of-XXXXX.parquet |
|
|
... |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## Schema |
|
|
|
|
|
Each record follows **exactly** this structure: |
|
|
|
|
|
```json |
|
|
{ |
|
|
"text": "<single-document CVE text with header, dates, CWEs, affected summary, description, references>", |
|
|
"meta": { |
|
|
"source": "nvd", |
|
|
"source_url": "https://nvd.nist.gov/vuln/detail/CVE-YYYY-XXXXX", |
|
|
"license": "Public Domain (US Gov / NIST NVD)", |
|
|
"cve_id": "CVE-YYYY-XXXXX", |
|
|
"published": "YYYY-MM-DDTHH:MM:SSZ", |
|
|
"last_modified": "YYYY-MM-DDTHH:MM:SSZ", |
|
|
"cvss": { |
|
|
"severity": "CRITICAL|HIGH|MEDIUM|LOW|NONE|UNSPECIFIED", |
|
|
"baseScore": 9.8, |
|
|
"vectorString": "CVSS:3.1/AV:N/AC:L/..." |
|
|
}, |
|
|
"cwes": ["CWE-79", "CWE-89"], |
|
|
"num_cpes": 0, |
|
|
"redpajama_set_name": "SecurityNVD" |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
**Field notes** |
|
|
|
|
|
* `text` — plain UTF‑8 prose; no HTML; newlines preserved; boilerplate reduced. |
|
|
* `meta.cvss.severity` — **string** label (e.g., `CRITICAL`, `HIGH`, …). |
|
|
* `meta.cwes` — **deduped** CWE identifiers/names when available. |
|
|
* `meta.num_cpes` — count of affected CPE matches retained for compactness. |
|
|
* `meta.source_url` — canonical NVD details page for the specific CVE. |
|
|
|
|
|
--- |
|
|
|
|
|
## Loading |
|
|
|
|
|
### Load the Parquet config (recommended) |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
REPO = "tandevllc/cve_dataset" |
|
|
ds = load_dataset(REPO, name="cve", split="train") |
|
|
print(len(ds), ds.column_names) |
|
|
print(ds[0]["text"].split("\n", 4)[0]) # header line |
|
|
print(ds[0]["meta"]["cve_id"], ds[0]["meta"]["cvss"]["severity"]) # e.g., CVE id + severity |
|
|
``` |
|
|
|
|
|
### Typical filters |
|
|
|
|
|
```python |
|
|
# Severity slice |
|
|
critical = ds.filter(lambda r: (r.get("meta") or {}).get("cvss", {}).get("severity") == "CRITICAL") |
|
|
|
|
|
# Year slice by published timestamp |
|
|
recent_2024 = ds.filter(lambda r: (r.get("meta") or {}).get("published", "").startswith("2024-")) |
|
|
|
|
|
# CWE presence |
|
|
has_xss = ds.filter(lambda r: any("CWE-79" in c for c in (r.get("meta") or {}).get("cwes", []))) |
|
|
``` |
|
|
|
|
|
### RAG / retrieval quickstart |
|
|
|
|
|
```python |
|
|
# Build a tiny vector index over the text field |
|
|
from datasets import load_dataset |
|
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
|
from sklearn.neighbors import NearestNeighbors |
|
|
|
|
|
repo = "tandevllc/cve_dataset" |
|
|
corpus = load_dataset(repo, name="cve", split="train") |
|
|
texts = corpus["text"] |
|
|
vec = TfidfVectorizer(min_df=3).fit(texts) |
|
|
X = vec.transform(texts) |
|
|
knn = NearestNeighbors(n_neighbors=10, metric="cosine").fit(X) |
|
|
|
|
|
# Query |
|
|
q = "unauthenticated RCE in Apache HTTP Server" |
|
|
qv = vec.transform([q]) |
|
|
_, idx = knn.kneighbors(qv, n_neighbors=10) |
|
|
results = corpus.select(idx[0].tolist()) |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## Intended uses |
|
|
|
|
|
* **Security research**: trend analysis, CWE/technology clustering, severity drift. |
|
|
* **Pretraining / continued pretraining** of security‑aware LLMs. |
|
|
* **RAG** over vulnerability text for look‑ups and enrichment. |
|
|
* **Classification**: severity, CWE family, vendor/product (with external joins), exploitability proxies. |
|
|
* **Summarization & QA**: human‑readable notes out of CVE bulletins. |
|
|
|
|
|
> *Not* a substitute for vendor advisories or patches. Always confirm details with original sources. |
|
|
|
|
|
--- |
|
|
|
|
|
## Limitations & caveats |
|
|
|
|
|
* **Abstraction**: Some vendor‑specific nuances are simplified in the textual rendering. |
|
|
* **Coverage**: Mirrors what is present in NVD; if a CVE lacks English description, it may be omitted. |
|
|
* **Metadata sparsity**: CWEs and CVSS may be missing for certain records. |
|
|
* **CPEs**: Only the **count** (`num_cpes`) is preserved to keep records compact. |
|
|
|
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@dataset{tandevllc_2025_cve_dataset, |
|
|
author = {Gupta, Smridh}, |
|
|
title = {TanDev CVE Dataset}, |
|
|
year = {2025}, |
|
|
url = {https://huggingface.co/datasets/tandevllc/cve_dataset} |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## Maintainer |
|
|
|
|
|
**Smridh Gupta** — [[email protected]](mailto:[email protected]) |