cve_dataset / README.md
smridhgupta's picture
Update README.md
3d00c9c verified
---
license: other
task_categories:
- text-generation
- question-answering
- text-classification
- text-retrieval
- text-ranking
language:
- en
tags:
- security
- cve
- nvd
- vulnerabilities
- cybersecurity
- cyber-security
- cwe
- cvss
- jsonl
- slimpajama
- text
- dataset
- rag
- retrieval
- question-answering
pretty_name: TanDev CVE Dataset
size_categories:
- 100K<n<1M
dataset_info:
config_name: cve
features:
- name: text
dtype: string
- name: meta
struct:
- name: source
dtype: string
- name: source_url
dtype: string
- name: license
dtype: string
- name: cve_id
dtype: string
- name: published
dtype: string
- name: last_modified
dtype: string
- name: cvss
struct:
- name: severity
dtype: string
- name: baseScore
dtype: float64
- name: vectorString
dtype: string
- name: cwes
list: string
- name: num_cpes
dtype: int64
- name: redpajama_set_name
dtype: string
splits:
- name: train
num_bytes: 379034186
num_examples: 316780
download_size: 90048495
dataset_size: 379034186
configs:
- config_name: cve
data_files:
- split: train
path: cve/train-*
---
# TanDev CVE Dataset (NVD SlimPajama Corpus)
A **SlimPajama‑style** corpus of CVE entries derived from the **NIST NVD (CVE 2.0)** data feeds (2002→present). Each row is a cleaned, single‑document text representation of a CVE with structured metadata for CVSS, CWE(s), timestamps, and a canonical NVD link—ready for **pretraining/continued‑pretraining**, **RAG**, **retrieval/evaluation**, and **downstream classifiers**.
**Token count:** ~108.2M tokens.
**License:** "TanDev Proprietary License — All Rights Reserved"
> ⚠️ **Ethical and responsible use.** This dataset summarizes publicly available vulnerability records. Use responsibly for research, education, and defensive security; always validate against vendor advisories before operational use.
---
## What’s in this release (Parquet)
* **Primary delivery = Parquet** shards under `data/<config>/…/train-*.parquet` for fast streaming with `datasets`.
* **Raw JSON** kept alongside in `raw/` for transparency and reproducibility.
* **One named config:** `cve` (covers all available CVE rows).
> If you previously downloaded `raw/cve.json[l]`, you can keep using it. The Hub will serve Parquet for `load_dataset(..., name="cve")` automatically.
---
## Directory layout
```
/ # dataset root (this card lives here as README.md)
raw/
cve.json | cve.jsonl[.gz|.zst] # original export retained
data/
cve/
default/1.0.0/train/
train-00000-of-XXXXX.parquet
train-00001-of-XXXXX.parquet
...
```
---
## Schema
Each record follows **exactly** this structure:
```json
{
"text": "<single-document CVE text with header, dates, CWEs, affected summary, description, references>",
"meta": {
"source": "nvd",
"source_url": "https://nvd.nist.gov/vuln/detail/CVE-YYYY-XXXXX",
"license": "Public Domain (US Gov / NIST NVD)",
"cve_id": "CVE-YYYY-XXXXX",
"published": "YYYY-MM-DDTHH:MM:SSZ",
"last_modified": "YYYY-MM-DDTHH:MM:SSZ",
"cvss": {
"severity": "CRITICAL|HIGH|MEDIUM|LOW|NONE|UNSPECIFIED",
"baseScore": 9.8,
"vectorString": "CVSS:3.1/AV:N/AC:L/..."
},
"cwes": ["CWE-79", "CWE-89"],
"num_cpes": 0,
"redpajama_set_name": "SecurityNVD"
}
}
```
**Field notes**
* `text` — plain UTF‑8 prose; no HTML; newlines preserved; boilerplate reduced.
* `meta.cvss.severity`**string** label (e.g., `CRITICAL`, `HIGH`, …).
* `meta.cwes`**deduped** CWE identifiers/names when available.
* `meta.num_cpes` — count of affected CPE matches retained for compactness.
* `meta.source_url` — canonical NVD details page for the specific CVE.
---
## Loading
### Load the Parquet config (recommended)
```python
from datasets import load_dataset
REPO = "tandevllc/cve_dataset"
ds = load_dataset(REPO, name="cve", split="train")
print(len(ds), ds.column_names)
print(ds[0]["text"].split("\n", 4)[0]) # header line
print(ds[0]["meta"]["cve_id"], ds[0]["meta"]["cvss"]["severity"]) # e.g., CVE id + severity
```
### Typical filters
```python
# Severity slice
critical = ds.filter(lambda r: (r.get("meta") or {}).get("cvss", {}).get("severity") == "CRITICAL")
# Year slice by published timestamp
recent_2024 = ds.filter(lambda r: (r.get("meta") or {}).get("published", "").startswith("2024-"))
# CWE presence
has_xss = ds.filter(lambda r: any("CWE-79" in c for c in (r.get("meta") or {}).get("cwes", [])))
```
### RAG / retrieval quickstart
```python
# Build a tiny vector index over the text field
from datasets import load_dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import NearestNeighbors
repo = "tandevllc/cve_dataset"
corpus = load_dataset(repo, name="cve", split="train")
texts = corpus["text"]
vec = TfidfVectorizer(min_df=3).fit(texts)
X = vec.transform(texts)
knn = NearestNeighbors(n_neighbors=10, metric="cosine").fit(X)
# Query
q = "unauthenticated RCE in Apache HTTP Server"
qv = vec.transform([q])
_, idx = knn.kneighbors(qv, n_neighbors=10)
results = corpus.select(idx[0].tolist())
```
---
## Intended uses
* **Security research**: trend analysis, CWE/technology clustering, severity drift.
* **Pretraining / continued pretraining** of security‑aware LLMs.
* **RAG** over vulnerability text for look‑ups and enrichment.
* **Classification**: severity, CWE family, vendor/product (with external joins), exploitability proxies.
* **Summarization & QA**: human‑readable notes out of CVE bulletins.
> *Not* a substitute for vendor advisories or patches. Always confirm details with original sources.
---
## Limitations & caveats
* **Abstraction**: Some vendor‑specific nuances are simplified in the textual rendering.
* **Coverage**: Mirrors what is present in NVD; if a CVE lacks English description, it may be omitted.
* **Metadata sparsity**: CWEs and CVSS may be missing for certain records.
* **CPEs**: Only the **count** (`num_cpes`) is preserved to keep records compact.
## Citation
```bibtex
@dataset{tandevllc_2025_cve_dataset,
author = {Gupta, Smridh},
title = {TanDev CVE Dataset},
year = {2025},
url = {https://huggingface.co/datasets/tandevllc/cve_dataset}
}
```
---
## Maintainer
**Smridh Gupta** — [[email protected]](mailto:[email protected])