Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'test' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      JSON parse error: Column() changed from object to string in row 0
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
                  df = pandas_read_json(f)
                       ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 815, in read_json
                  return json_reader.read()
                         ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1014, in read
                  obj = self._get_object_parser(self.data)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1040, in _get_object_parser
                  obj = FrameParser(json, **kwargs).parse()
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1176, in parse
                  self._parse()
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1391, in _parse
                  self.obj = DataFrame(
                             ^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/frame.py", line 778, in __init__
                  mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 503, in dict_to_mgr
                  return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 114, in arrays_to_mgr
                  index = _extract_index(arrays)
                          ^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 680, in _extract_index
                  raise ValueError(
              ValueError: Mixing dicts with non-Series may lead to ambiguous ordering.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
                  raise e
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                             ^^^^^^^^^^^^^^
                File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

STT Fine-Tune Evaluation Results

Evaluation Date: December 10, 2025

This repository contains evaluation results comparing locally fine-tuned Whisper models against stock (original) Whisper inference across all model sizes.

Related Resources

Models Evaluated

  • Fine-tuned models: tiny, base, small, medium, large
  • Original (stock) models: tiny, base, small, medium, large

Results Summary

Model Avg WER Median WER Min WER Max WER Avg Time/File (s)
original-medium 2.68% 0.00% 0.00% 14.29% 1.08
original-large 2.74% 0.00% 0.00% 15.79% 1.00
finetune-medium 2.93% 0.00% 0.00% 19.05% 1.47
finetune-large 2.97% 0.00% 0.00% 18.18% 0.99
finetune-small 3.41% 0.00% 0.00% 19.23% 0.82
original-small 3.92% 0.00% 0.00% 19.05% 0.52
finetune-base 4.97% 3.85% 0.00% 20.83% 0.41
original-base 6.49% 4.17% 0.00% 100.00% 0.41
finetune-tiny 6.55% 4.55% 0.00% 33.33% 0.25
original-tiny 7.76% 4.76% 0.00% 26.32% 0.28

Models sorted by average WER (best to worst)

Key Findings

  • Best overall performance: Original medium model (2.68% avg WER)
  • Fine-tuning benefit most visible at smaller model sizes: The fine-tuned base model significantly outperforms the original base model (4.97% vs 6.49% WER)
  • Original base model outlier: The original base model had a maximum WER of 100%, indicating complete transcription failures on some samples
  • 92 audio files evaluated per model

Directory Structure

results/
β”œβ”€β”€ summary_20251210_213315.csv          # Summary statistics for all models
β”œβ”€β”€ detailed_results_20251210_213315.json # Full detailed results
β”œβ”€β”€ evaluation_progress.json              # Evaluation progress tracking
└── individual/                           # Per-file results by model
    β”œβ”€β”€ finetune-base/
    β”œβ”€β”€ finetune-large/
    β”œβ”€β”€ finetune-medium/
    β”œβ”€β”€ finetune-small/
    β”œβ”€β”€ finetune-tiny/
    β”œβ”€β”€ original-base/
    β”œβ”€β”€ original-large/
    β”œβ”€β”€ original-medium/
    β”œβ”€β”€ original-small/
    └── original-tiny/

Metrics

  • WER (Word Error Rate): The primary metric used, calculated as (substitutions + insertions + deletions) / reference words
  • Duration: Inference time per audio file in seconds
Downloads last month
1