Datasets:
language:
- th
license: cc-by-sa-4.0
size_categories:
- 10K<n<100K
task_categories:
- text-generation
- question-answering
- summarization
- text-classification
tags:
- finance
- legal
- retail
- medical
dataset_info:
- config_name: default
features:
- name: ID
dtype: string
- name: Domain
dtype: string
- name: Instruction
dtype: string
- name: Input
dtype: string
- name: Output
dtype: string
- name: Tags
dtype: string
- name: Task_type
dtype: string
- name: License
dtype: string
splits:
- name: train
num_bytes: 310301464
num_examples: 32207
- name: test
num_bytes: 77188084
num_examples: 7793
download_size: 127947319
dataset_size: 387489548
- config_name: full
features:
- name: ID
dtype: string
- name: Domain
dtype: string
- name: Instruction
dtype: string
- name: Input
dtype: string
- name: Output
dtype: string
- name: Tags
dtype: string
- name: Task_type
dtype: string
- name: License
dtype: string
splits:
- name: train
num_bytes: 310298412
num_examples: 32207
- name: test
num_bytes: 77187609
num_examples: 7793
download_size: 127951575
dataset_size: 387486021
- config_name: paper
features:
- name: ID
dtype: string
- name: Domain
dtype: string
- name: Instruction
dtype: string
- name: Input
dtype: string
- name: Output
dtype: string
- name: Tags
dtype: string
- name: Task_type
dtype: string
- name: License
dtype: string
- name: Cultural
dtype: string
splits:
- name: train
num_bytes: 268816999
num_examples: 28098
- name: test
num_bytes: 67733647
num_examples: 6916
download_size: 110689550
dataset_size: 336550646
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: paper
data_files:
- split: train
path: paper/train-*
- split: test
path: paper/test-*
WangchanThaiInstruct is a human-authored Thai dataset that improves instruction-following in low-resource settings, capturing cultural and domain-specific nuances across four domains and seven task types.
The evaluate code can be found at this github link
@inproceedings{limkonchotiwat2025thaiinstruct,
title = {WangchanThaiInstruct: An Instruction-Following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai},
author = {Limkonchotiwat, Peerat and Tuchinda, Pume and Lowphansirikul, Lalita and Nonesung, Surapon and Tasawong, Panuthep and Aji, Alham Fikri and Udomcharoenchaikit, Can and Nutanong, Sarana},
booktitle = {Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing},
year = {2025},
publisher = {Association for Computational Linguistics}
}
100% Human-Annotated Thai Instruction Dataset (Batch 1-5 Release, v0.4_beta)
We have both NC and SA licenses. Please adhere to the license terms. Each row has its license according to its source. We will continue updating licenses as we receive permission from the respective license sources.
4 Domains:
- Medical
- Finance
- Retail
- Legal
7 Tasks:
- Summarization
- Open QA
- Close QA
- Classification
- Creative Writing
- Brainstorming
- Multiple Choice QA
Usage
We provide to subsets for our dataset, default and paper. Default is the full dataset, however it does not contain cultural tags for 5000 samples. The paper subset is the version we utilize in all our experiments in the paper and is the version you should you use if you want to reproduce the results in the paper, and it also contains the cultural tags that marks which samples are cultural and general.
from datasets import load_dataset
# For the full subset
dataset = load_dataset("airesearch/WangchanThaiInstruct")
# For the paper subset
dataset = load_dataset("airesearch/WangchanThaiInstruct", "paper")
