Index
stringlengths 1
5
| Challenge
stringlengths 41
1.55k
| Answer in Latex
stringclasses 122
values | Answer in Sympy
stringlengths 1
774
| Variation
stringclasses 31
values | Source
stringclasses 61
values |
|---|---|---|---|---|---|
16601
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(86\right) }} \frac{ \left(77\right) x \sin(2 \left(86\right) x)}{(1 \left(87\right) ) + \cos^2(2 \left(86\right) x)} dx$
|
pi*86**(-2)*87**(-1/2)*atan(87**(-1/2))*77/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16602
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(85\right) }} \frac{ \left(66\right) x \sin(2 \left(85\right) x)}{(1 \left(73\right) ) + \cos^2(2 \left(85\right) x)} dx$
|
pi*85**(-2)*73**(-1/2)*atan(73**(-1/2))*66/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16603
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(65\right) }} \frac{ \left(29\right) x \sin(2 \left(65\right) x)}{(1 \left(98\right) ) + \cos^2(2 \left(65\right) x)} dx$
|
pi*65**(-2)*98**(-1/2)*atan(98**(-1/2))*29/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16604
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(77\right) }} \frac{ \left(47\right) x \sin(2 \left(77\right) x)}{(1 \left(12\right) ) + \cos^2(2 \left(77\right) x)} dx$
|
pi*77**(-2)*12**(-1/2)*atan(12**(-1/2))*47/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16605
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(53\right) }} \frac{ \left(54\right) x \sin(2 \left(53\right) x)}{(1 \left(63\right) ) + \cos^2(2 \left(53\right) x)} dx$
|
pi*53**(-2)*63**(-1/2)*atan(63**(-1/2))*54/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16606
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(33\right) }} \frac{ \left(99\right) x \sin(2 \left(33\right) x)}{(1 \left(70\right) ) + \cos^2(2 \left(33\right) x)} dx$
|
pi*33**(-2)*70**(-1/2)*atan(70**(-1/2))*99/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16607
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(71\right) }} \frac{ \left(25\right) x \sin(2 \left(71\right) x)}{(1 \left(83\right) ) + \cos^2(2 \left(71\right) x)} dx$
|
pi*71**(-2)*83**(-1/2)*atan(83**(-1/2))*25/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16608
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(43\right) }} \frac{ \left(50\right) x \sin(2 \left(43\right) x)}{(1 \left(71\right) ) + \cos^2(2 \left(43\right) x)} dx$
|
pi*43**(-2)*71**(-1/2)*atan(71**(-1/2))*50/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16609
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(23\right) }} \frac{ \left(44\right) x \sin(2 \left(23\right) x)}{(1 \left(57\right) ) + \cos^2(2 \left(23\right) x)} dx$
|
pi*23**(-2)*57**(-1/2)*atan(57**(-1/2))*44/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16610
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(37\right) }} \frac{ \left(63\right) x \sin(2 \left(37\right) x)}{(1 \left(91\right) ) + \cos^2(2 \left(37\right) x)} dx$
|
pi*37**(-2)*91**(-1/2)*atan(91**(-1/2))*63/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16611
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(79\right) }} \frac{ \left(27\right) x \sin(2 \left(79\right) x)}{(1 \left(79\right) ) + \cos^2(2 \left(79\right) x)} dx$
|
pi*79**(-5/2)*atan(79**(-1/2))*27/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16612
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(51\right) }} \frac{ \left(60\right) x \sin(2 \left(51\right) x)}{(1 \left(26\right) ) + \cos^2(2 \left(51\right) x)} dx$
|
pi*51**(-2)*26**(-1/2)*atan(26**(-1/2))*60/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16613
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(98\right) }} \frac{ \left(77\right) x \sin(2 \left(98\right) x)}{(1 \left(84\right) ) + \cos^2(2 \left(98\right) x)} dx$
|
pi*98**(-2)*84**(-1/2)*atan(84**(-1/2))*77/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16614
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(58\right) }} \frac{ \left(50\right) x \sin(2 \left(58\right) x)}{(1 \left(15\right) ) + \cos^2(2 \left(58\right) x)} dx$
|
pi*58**(-2)*15**(-1/2)*atan(15**(-1/2))*50/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16615
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(66\right) }} \frac{ \left(73\right) x \sin(2 \left(66\right) x)}{(1 \left(23\right) ) + \cos^2(2 \left(66\right) x)} dx$
|
pi*66**(-2)*23**(-1/2)*atan(23**(-1/2))*73/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16616
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(19\right) }} \frac{ \left(80\right) x \sin(2 \left(19\right) x)}{(1 \left(60\right) ) + \cos^2(2 \left(19\right) x)} dx$
|
pi*19**(-2)*60**(-1/2)*atan(60**(-1/2))*80/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16617
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(72\right) }} \frac{ \left(46\right) x \sin(2 \left(72\right) x)}{(1 \left(97\right) ) + \cos^2(2 \left(72\right) x)} dx$
|
pi*72**(-2)*97**(-1/2)*atan(97**(-1/2))*46/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16618
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(41\right) }} \frac{ \left(44\right) x \sin(2 \left(41\right) x)}{(1 \left(25\right) ) + \cos^2(2 \left(41\right) x)} dx$
|
pi*41**(-2)*25**(-1/2)*atan(25**(-1/2))*44/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16619
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(79\right) }} \frac{ \left(93\right) x \sin(2 \left(79\right) x)}{(1 \left(60\right) ) + \cos^2(2 \left(79\right) x)} dx$
|
pi*79**(-2)*60**(-1/2)*atan(60**(-1/2))*93/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16620
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(18\right) }} \frac{ \left(49\right) x \sin(2 \left(18\right) x)}{(1 \left(43\right) ) + \cos^2(2 \left(18\right) x)} dx$
|
pi*18**(-2)*43**(-1/2)*atan(43**(-1/2))*49/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16621
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(73\right) }} \frac{ \left(32\right) x \sin(2 \left(73\right) x)}{(1 \left(87\right) ) + \cos^2(2 \left(73\right) x)} dx$
|
pi*73**(-2)*87**(-1/2)*atan(87**(-1/2))*32/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16622
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(41\right) }} \frac{ \left(24\right) x \sin(2 \left(41\right) x)}{(1 \left(23\right) ) + \cos^2(2 \left(41\right) x)} dx$
|
pi*41**(-2)*23**(-1/2)*atan(23**(-1/2))*24/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16623
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(27\right) }} \frac{ \left(40\right) x \sin(2 \left(27\right) x)}{(1 \left(19\right) ) + \cos^2(2 \left(27\right) x)} dx$
|
pi*27**(-2)*19**(-1/2)*atan(19**(-1/2))*40/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16624
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(38\right) }} \frac{ \left(14\right) x \sin(2 \left(38\right) x)}{(1 \left(41\right) ) + \cos^2(2 \left(38\right) x)} dx$
|
pi*38**(-2)*41**(-1/2)*atan(41**(-1/2))*14/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16625
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(93\right) }} \frac{ \left(85\right) x \sin(2 \left(93\right) x)}{(1 \left(22\right) ) + \cos^2(2 \left(93\right) x)} dx$
|
pi*93**(-2)*22**(-1/2)*atan(22**(-1/2))*85/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16626
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(26\right) }} \frac{ \left(29\right) x \sin(2 \left(26\right) x)}{(1 \left(85\right) ) + \cos^2(2 \left(26\right) x)} dx$
|
pi*26**(-2)*85**(-1/2)*atan(85**(-1/2))*29/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16627
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(59\right) }} \frac{ \left(50\right) x \sin(2 \left(59\right) x)}{(1 \left(57\right) ) + \cos^2(2 \left(59\right) x)} dx$
|
pi*59**(-2)*57**(-1/2)*atan(57**(-1/2))*50/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16628
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(20\right) }} \frac{ \left(50\right) x \sin(2 \left(20\right) x)}{(1 \left(15\right) ) + \cos^2(2 \left(20\right) x)} dx$
|
pi*20**(-2)*15**(-1/2)*atan(15**(-1/2))*50/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16629
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(65\right) }} \frac{ \left(39\right) x \sin(2 \left(65\right) x)}{(1 \left(34\right) ) + \cos^2(2 \left(65\right) x)} dx$
|
pi*65**(-2)*34**(-1/2)*atan(34**(-1/2))*39/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16630
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(93\right) }} \frac{ \left(70\right) x \sin(2 \left(93\right) x)}{(1 \left(40\right) ) + \cos^2(2 \left(93\right) x)} dx$
|
pi*93**(-2)*40**(-1/2)*atan(40**(-1/2))*70/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16631
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(49\right) }} \frac{ \left(45\right) x \sin(2 \left(49\right) x)}{(1 \left(24\right) ) + \cos^2(2 \left(49\right) x)} dx$
|
pi*49**(-2)*24**(-1/2)*atan(24**(-1/2))*45/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16632
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(72\right) }} \frac{ \left(58\right) x \sin(2 \left(72\right) x)}{(1 \left(29\right) ) + \cos^2(2 \left(72\right) x)} dx$
|
pi*72**(-2)*29**(-1/2)*atan(29**(-1/2))*58/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16633
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(99\right) }} \frac{ \left(80\right) x \sin(2 \left(99\right) x)}{(1 \left(39\right) ) + \cos^2(2 \left(99\right) x)} dx$
|
pi*99**(-2)*39**(-1/2)*atan(39**(-1/2))*80/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16634
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(73\right) }} \frac{ \left(75\right) x \sin(2 \left(73\right) x)}{(1 \left(77\right) ) + \cos^2(2 \left(73\right) x)} dx$
|
pi*73**(-2)*77**(-1/2)*atan(77**(-1/2))*75/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16635
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(80\right) }} \frac{ \left(15\right) x \sin(2 \left(80\right) x)}{(1 \left(22\right) ) + \cos^2(2 \left(80\right) x)} dx$
|
pi*80**(-2)*22**(-1/2)*atan(22**(-1/2))*15/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16636
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(10\right) }} \frac{ \left(19\right) x \sin(2 \left(10\right) x)}{(1 \left(91\right) ) + \cos^2(2 \left(10\right) x)} dx$
|
pi*10**(-2)*91**(-1/2)*atan(91**(-1/2))*19/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16637
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(52\right) }} \frac{ \left(89\right) x \sin(2 \left(52\right) x)}{(1 \left(10\right) ) + \cos^2(2 \left(52\right) x)} dx$
|
pi*52**(-2)*10**(-1/2)*atan(10**(-1/2))*89/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16638
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(80\right) }} \frac{ \left(42\right) x \sin(2 \left(80\right) x)}{(1 \left(84\right) ) + \cos^2(2 \left(80\right) x)} dx$
|
pi*80**(-2)*84**(-1/2)*atan(84**(-1/2))*42/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16639
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(46\right) }} \frac{ \left(19\right) x \sin(2 \left(46\right) x)}{(1 \left(33\right) ) + \cos^2(2 \left(46\right) x)} dx$
|
pi*46**(-2)*33**(-1/2)*atan(33**(-1/2))*19/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16640
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(26\right) }} \frac{ \left(93\right) x \sin(2 \left(26\right) x)}{(1 \left(49\right) ) + \cos^2(2 \left(26\right) x)} dx$
|
pi*26**(-2)*49**(-1/2)*atan(49**(-1/2))*93/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16641
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(14\right) }} \frac{ \left(76\right) x \sin(2 \left(14\right) x)}{(1 \left(26\right) ) + \cos^2(2 \left(14\right) x)} dx$
|
pi*14**(-2)*26**(-1/2)*atan(26**(-1/2))*76/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16642
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(26\right) }} \frac{ \left(32\right) x \sin(2 \left(26\right) x)}{(1 \left(23\right) ) + \cos^2(2 \left(26\right) x)} dx$
|
pi*26**(-2)*23**(-1/2)*atan(23**(-1/2))*32/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16643
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(26\right) }} \frac{ \left(45\right) x \sin(2 \left(26\right) x)}{(1 \left(52\right) ) + \cos^2(2 \left(26\right) x)} dx$
|
pi*26**(-2)*52**(-1/2)*atan(52**(-1/2))*45/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16644
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(24\right) }} \frac{ \left(49\right) x \sin(2 \left(24\right) x)}{(1 \left(48\right) ) + \cos^2(2 \left(24\right) x)} dx$
|
pi*24**(-2)*48**(-1/2)*atan(48**(-1/2))*49/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16645
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(37\right) }} \frac{ \left(12\right) x \sin(2 \left(37\right) x)}{(1 \left(77\right) ) + \cos^2(2 \left(37\right) x)} dx$
|
pi*37**(-2)*77**(-1/2)*atan(77**(-1/2))*12/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16646
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(70\right) }} \frac{ \left(20\right) x \sin(2 \left(70\right) x)}{(1 \left(59\right) ) + \cos^2(2 \left(70\right) x)} dx$
|
pi*70**(-2)*59**(-1/2)*atan(59**(-1/2))*20/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16647
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(63\right) }} \frac{ \left(16\right) x \sin(2 \left(63\right) x)}{(1 \left(27\right) ) + \cos^2(2 \left(63\right) x)} dx$
|
pi*63**(-2)*27**(-1/2)*atan(27**(-1/2))*16/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16648
|
Solve the following integral.
$\int_0^{\frac{\pi}{2 \left(57\right) }} \frac{ \left(95\right) x \sin(2 \left(57\right) x)}{(1 \left(94\right) ) + \cos^2(2 \left(57\right) x)} dx$
|
pi*57**(-2)*94**(-1/2)*atan(94**(-1/2))*95/4
|
Numeric-All-2-S
|
OBMU 2019 - Q21
|
|
16649
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(52\right) e^{ \left(85\right) x} ( \left(85\right) x-1)}{ \left(85\right) x \left( \left(15\right) e^{ \left(85\right) x}+ \left(85\right) \left(63\right) x\right)} dx$
|
-85**(-1)*15**(-1)*log((e**2*15 + 2*63)**(-1)*(2*e*15 + 2*63))*52
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16650
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(61\right) e^{ \left(98\right) x} ( \left(98\right) x-1)}{ \left(98\right) x \left( \left(29\right) e^{ \left(98\right) x}+ \left(98\right) \left(87\right) x\right)} dx$
|
-98**(-1)*29**(-1)*log((e**2*29 + 2*87)**(-1)*(2*e*29 + 2*87))*61
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16651
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(31\right) e^{ \left(15\right) x} ( \left(15\right) x-1)}{ \left(15\right) x \left( \left(28\right) e^{ \left(15\right) x}+ \left(15\right) \left(10\right) x\right)} dx$
|
-15**(-1)*28**(-1)*log((e**2*28 + 2*10)**(-1)*(2*e*28 + 2*10))*31
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16652
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(50\right) e^{ \left(53\right) x} ( \left(53\right) x-1)}{ \left(53\right) x \left( \left(94\right) e^{ \left(53\right) x}+ \left(53\right) \left(93\right) x\right)} dx$
|
-53**(-1)*94**(-1)*log((e**2*94 + 2*93)**(-1)*(2*e*94 + 2*93))*50
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16653
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(54\right) e^{ \left(34\right) x} ( \left(34\right) x-1)}{ \left(34\right) x \left( \left(47\right) e^{ \left(34\right) x}+ \left(34\right) \left(58\right) x\right)} dx$
|
-34**(-1)*47**(-1)*log((e**2*47 + 2*58)**(-1)*(2*e*47 + 2*58))*54
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16654
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(29\right) e^{ \left(23\right) x} ( \left(23\right) x-1)}{ \left(23\right) x \left( \left(55\right) e^{ \left(23\right) x}+ \left(23\right) \left(76\right) x\right)} dx$
|
-23**(-1)*55**(-1)*log((e**2*55 + 2*76)**(-1)*(2*e*55 + 2*76))*29
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16655
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(88\right) e^{ \left(86\right) x} ( \left(86\right) x-1)}{ \left(86\right) x \left( \left(39\right) e^{ \left(86\right) x}+ \left(86\right) \left(61\right) x\right)} dx$
|
-86**(-1)*39**(-1)*log((e**2*39 + 2*61)**(-1)*(2*e*39 + 2*61))*88
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16656
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(18\right) e^{ \left(22\right) x} ( \left(22\right) x-1)}{ \left(22\right) x \left( \left(41\right) e^{ \left(22\right) x}+ \left(22\right) \left(28\right) x\right)} dx$
|
-22**(-1)*41**(-1)*log((e**2*41 + 2*28)**(-1)*(2*e*41 + 2*28))*18
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16657
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(78\right) e^{ \left(11\right) x} ( \left(11\right) x-1)}{ \left(11\right) x \left( \left(83\right) e^{ \left(11\right) x}+ \left(11\right) \left(14\right) x\right)} dx$
|
-11**(-1)*83**(-1)*log((e**2*83 + 2*14)**(-1)*(2*e*83 + 2*14))*78
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16658
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(27\right) e^{ \left(55\right) x} ( \left(55\right) x-1)}{ \left(55\right) x \left( \left(15\right) e^{ \left(55\right) x}+ \left(55\right) \left(33\right) x\right)} dx$
|
-55**(-1)*15**(-1)*log((e**2*15 + 2*33)**(-1)*(2*e*15 + 2*33))*27
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16659
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(72\right) e^{ \left(32\right) x} ( \left(32\right) x-1)}{ \left(32\right) x \left( \left(84\right) e^{ \left(32\right) x}+ \left(32\right) \left(71\right) x\right)} dx$
|
-32**(-1)*84**(-1)*log((e**2*84 + 2*71)**(-1)*(2*e*84 + 2*71))*72
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16660
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(48\right) e^{ \left(76\right) x} ( \left(76\right) x-1)}{ \left(76\right) x \left( \left(91\right) e^{ \left(76\right) x}+ \left(76\right) \left(29\right) x\right)} dx$
|
-76**(-1)*91**(-1)*log((e**2*91 + 2*29)**(-1)*(2*e*91 + 2*29))*48
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16661
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(98\right) e^{ \left(71\right) x} ( \left(71\right) x-1)}{ \left(71\right) x \left( \left(12\right) e^{ \left(71\right) x}+ \left(71\right) \left(42\right) x\right)} dx$
|
-71**(-1)*12**(-1)*log((e**2*12 + 2*42)**(-1)*(2*e*12 + 2*42))*98
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16662
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(14\right) e^{ \left(87\right) x} ( \left(87\right) x-1)}{ \left(87\right) x \left( \left(59\right) e^{ \left(87\right) x}+ \left(87\right) \left(90\right) x\right)} dx$
|
-87**(-1)*59**(-1)*log((e**2*59 + 2*90)**(-1)*(2*e*59 + 2*90))*14
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16663
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(80\right) e^{ \left(66\right) x} ( \left(66\right) x-1)}{ \left(66\right) x \left( \left(79\right) e^{ \left(66\right) x}+ \left(66\right) \left(21\right) x\right)} dx$
|
-66**(-1)*79**(-1)*log((e**2*79 + 2*21)**(-1)*(2*e*79 + 2*21))*80
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16664
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(83\right) e^{ \left(42\right) x} ( \left(42\right) x-1)}{ \left(42\right) x \left( \left(45\right) e^{ \left(42\right) x}+ \left(42\right) \left(15\right) x\right)} dx$
|
-42**(-1)*45**(-1)*log((e**2*45 + 2*15)**(-1)*(2*e*45 + 2*15))*83
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16665
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(49\right) e^{ \left(79\right) x} ( \left(79\right) x-1)}{ \left(79\right) x \left( \left(67\right) e^{ \left(79\right) x}+ \left(79\right) \left(54\right) x\right)} dx$
|
-79**(-1)*67**(-1)*log((e**2*67 + 2*54)**(-1)*(2*e*67 + 2*54))*49
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16666
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(67\right) e^{ \left(50\right) x} ( \left(50\right) x-1)}{ \left(50\right) x \left( \left(64\right) e^{ \left(50\right) x}+ \left(50\right) \left(78\right) x\right)} dx$
|
-50**(-1)*64**(-1)*log((e**2*64 + 2*78)**(-1)*(2*e*64 + 2*78))*67
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16667
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(98\right) e^{ \left(84\right) x} ( \left(84\right) x-1)}{ \left(84\right) x \left( \left(46\right) e^{ \left(84\right) x}+ \left(84\right) \left(27\right) x\right)} dx$
|
-84**(-1)*46**(-1)*log((e**2*46 + 2*27)**(-1)*(2*e*46 + 2*27))*98
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16668
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(62\right) e^{ \left(30\right) x} ( \left(30\right) x-1)}{ \left(30\right) x \left( \left(91\right) e^{ \left(30\right) x}+ \left(30\right) \left(38\right) x\right)} dx$
|
-30**(-1)*91**(-1)*log((e**2*91 + 2*38)**(-1)*(2*e*91 + 2*38))*62
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16669
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(84\right) e^{ \left(42\right) x} ( \left(42\right) x-1)}{ \left(42\right) x \left( \left(54\right) e^{ \left(42\right) x}+ \left(42\right) \left(31\right) x\right)} dx$
|
-42**(-1)*54**(-1)*log((e**2*54 + 2*31)**(-1)*(2*e*54 + 2*31))*84
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16670
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(97\right) e^{ \left(61\right) x} ( \left(61\right) x-1)}{ \left(61\right) x \left( \left(97\right) e^{ \left(61\right) x}+ \left(61\right) \left(57\right) x\right)} dx$
|
-61**(-1)*97**(-1)*log((e**2*97 + 2*57)**(-1)*(2*e*97 + 2*57))*97
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16671
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(34\right) e^{ \left(76\right) x} ( \left(76\right) x-1)}{ \left(76\right) x \left( \left(23\right) e^{ \left(76\right) x}+ \left(76\right) \left(49\right) x\right)} dx$
|
-76**(-1)*23**(-1)*log((e**2*23 + 2*49)**(-1)*(2*e*23 + 2*49))*34
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16672
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(99\right) e^{ \left(37\right) x} ( \left(37\right) x-1)}{ \left(37\right) x \left( \left(14\right) e^{ \left(37\right) x}+ \left(37\right) \left(65\right) x\right)} dx$
|
-37**(-1)*14**(-1)*log((e**2*14 + 2*65)**(-1)*(2*e*14 + 2*65))*99
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16673
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(99\right) e^{ \left(70\right) x} ( \left(70\right) x-1)}{ \left(70\right) x \left( \left(34\right) e^{ \left(70\right) x}+ \left(70\right) \left(46\right) x\right)} dx$
|
-70**(-1)*34**(-1)*log((e**2*34 + 2*46)**(-1)*(2*e*34 + 2*46))*99
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16674
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(47\right) e^{ \left(14\right) x} ( \left(14\right) x-1)}{ \left(14\right) x \left( \left(36\right) e^{ \left(14\right) x}+ \left(14\right) \left(62\right) x\right)} dx$
|
-14**(-1)*36**(-1)*log((e**2*36 + 2*62)**(-1)*(2*e*36 + 2*62))*47
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16675
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(89\right) e^{ \left(10\right) x} ( \left(10\right) x-1)}{ \left(10\right) x \left( \left(70\right) e^{ \left(10\right) x}+ \left(10\right) \left(88\right) x\right)} dx$
|
-10**(-1)*70**(-1)*log((e**2*70 + 2*88)**(-1)*(2*e*70 + 2*88))*89
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16676
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(94\right) e^{ \left(89\right) x} ( \left(89\right) x-1)}{ \left(89\right) x \left( \left(10\right) e^{ \left(89\right) x}+ \left(89\right) \left(24\right) x\right)} dx$
|
-89**(-1)*10**(-1)*log((e**2*10 + 2*24)**(-1)*(2*e*10 + 2*24))*94
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16677
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(23\right) e^{ \left(96\right) x} ( \left(96\right) x-1)}{ \left(96\right) x \left( \left(82\right) e^{ \left(96\right) x}+ \left(96\right) \left(42\right) x\right)} dx$
|
-96**(-1)*82**(-1)*log((e**2*82 + 2*42)**(-1)*(2*e*82 + 2*42))*23
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16678
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(49\right) e^{ \left(85\right) x} ( \left(85\right) x-1)}{ \left(85\right) x \left( \left(30\right) e^{ \left(85\right) x}+ \left(85\right) \left(76\right) x\right)} dx$
|
-85**(-1)*30**(-1)*log((e**2*30 + 2*76)**(-1)*(2*e*30 + 2*76))*49
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16679
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(84\right) e^{ \left(43\right) x} ( \left(43\right) x-1)}{ \left(43\right) x \left( \left(44\right) e^{ \left(43\right) x}+ \left(43\right) \left(26\right) x\right)} dx$
|
-43**(-1)*44**(-1)*log((e**2*44 + 2*26)**(-1)*(2*e*44 + 2*26))*84
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16680
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(30\right) e^{ \left(77\right) x} ( \left(77\right) x-1)}{ \left(77\right) x \left( \left(10\right) e^{ \left(77\right) x}+ \left(77\right) \left(74\right) x\right)} dx$
|
-77**(-1)*10**(-1)*log((e**2*10 + 2*74)**(-1)*(2*e*10 + 2*74))*30
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16681
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(25\right) e^{ \left(58\right) x} ( \left(58\right) x-1)}{ \left(58\right) x \left( \left(86\right) e^{ \left(58\right) x}+ \left(58\right) \left(23\right) x\right)} dx$
|
-58**(-1)*86**(-1)*log((e**2*86 + 2*23)**(-1)*(2*e*86 + 2*23))*25
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16682
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(48\right) e^{ \left(53\right) x} ( \left(53\right) x-1)}{ \left(53\right) x \left( \left(30\right) e^{ \left(53\right) x}+ \left(53\right) \left(83\right) x\right)} dx$
|
-53**(-1)*30**(-1)*log((e**2*30 + 2*83)**(-1)*(2*e*30 + 2*83))*48
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16683
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(60\right) e^{ \left(48\right) x} ( \left(48\right) x-1)}{ \left(48\right) x \left( \left(48\right) e^{ \left(48\right) x}+ \left(48\right) \left(59\right) x\right)} dx$
|
-48**(-2)*log((e**2*48 + 2*59)**(-1)*(2*e*48 + 2*59))*60
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16684
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(33\right) e^{ \left(21\right) x} ( \left(21\right) x-1)}{ \left(21\right) x \left( \left(74\right) e^{ \left(21\right) x}+ \left(21\right) \left(88\right) x\right)} dx$
|
-21**(-1)*74**(-1)*log((e**2*74 + 2*88)**(-1)*(2*e*74 + 2*88))*33
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16685
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(78\right) e^{ \left(97\right) x} ( \left(97\right) x-1)}{ \left(97\right) x \left( \left(40\right) e^{ \left(97\right) x}+ \left(97\right) \left(55\right) x\right)} dx$
|
-97**(-1)*40**(-1)*log((e**2*40 + 2*55)**(-1)*(2*e*40 + 2*55))*78
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16686
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(30\right) e^{ \left(61\right) x} ( \left(61\right) x-1)}{ \left(61\right) x \left( \left(74\right) e^{ \left(61\right) x}+ \left(61\right) \left(34\right) x\right)} dx$
|
-61**(-1)*74**(-1)*log((e**2*74 + 2*34)**(-1)*(2*e*74 + 2*34))*30
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16687
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(33\right) e^{ \left(26\right) x} ( \left(26\right) x-1)}{ \left(26\right) x \left( \left(91\right) e^{ \left(26\right) x}+ \left(26\right) \left(63\right) x\right)} dx$
|
-26**(-1)*91**(-1)*log((e**2*91 + 2*63)**(-1)*(2*e*91 + 2*63))*33
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16688
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(75\right) e^{ \left(39\right) x} ( \left(39\right) x-1)}{ \left(39\right) x \left( \left(33\right) e^{ \left(39\right) x}+ \left(39\right) \left(86\right) x\right)} dx$
|
-39**(-1)*33**(-1)*log((e**2*33 + 2*86)**(-1)*(2*e*33 + 2*86))*75
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16689
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(94\right) e^{ \left(62\right) x} ( \left(62\right) x-1)}{ \left(62\right) x \left( \left(52\right) e^{ \left(62\right) x}+ \left(62\right) \left(66\right) x\right)} dx$
|
-62**(-1)*52**(-1)*log((e**2*52 + 2*66)**(-1)*(2*e*52 + 2*66))*94
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16690
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(21\right) e^{ \left(29\right) x} ( \left(29\right) x-1)}{ \left(29\right) x \left( \left(10\right) e^{ \left(29\right) x}+ \left(29\right) \left(65\right) x\right)} dx$
|
-29**(-1)*10**(-1)*log((e**2*10 + 2*65)**(-1)*(2*e*10 + 2*65))*21
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16691
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(59\right) e^{ \left(95\right) x} ( \left(95\right) x-1)}{ \left(95\right) x \left( \left(87\right) e^{ \left(95\right) x}+ \left(95\right) \left(42\right) x\right)} dx$
|
-95**(-1)*87**(-1)*log((e**2*87 + 2*42)**(-1)*(2*e*87 + 2*42))*59
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16692
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(71\right) e^{ \left(80\right) x} ( \left(80\right) x-1)}{ \left(80\right) x \left( \left(83\right) e^{ \left(80\right) x}+ \left(80\right) \left(55\right) x\right)} dx$
|
-80**(-1)*83**(-1)*log((e**2*83 + 2*55)**(-1)*(2*e*83 + 2*55))*71
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16693
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(55\right) e^{ \left(52\right) x} ( \left(52\right) x-1)}{ \left(52\right) x \left( \left(72\right) e^{ \left(52\right) x}+ \left(52\right) \left(22\right) x\right)} dx$
|
-52**(-1)*72**(-1)*log((e**2*72 + 2*22)**(-1)*(2*e*72 + 2*22))*55
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16694
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(21\right) e^{ \left(14\right) x} ( \left(14\right) x-1)}{ \left(14\right) x \left( \left(32\right) e^{ \left(14\right) x}+ \left(14\right) \left(70\right) x\right)} dx$
|
-14**(-1)*32**(-1)*log((e**2*32 + 2*70)**(-1)*(2*e*32 + 2*70))*21
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16695
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(51\right) e^{ \left(76\right) x} ( \left(76\right) x-1)}{ \left(76\right) x \left( \left(50\right) e^{ \left(76\right) x}+ \left(76\right) \left(67\right) x\right)} dx$
|
-76**(-1)*50**(-1)*log((e**2*50 + 2*67)**(-1)*(2*e*50 + 2*67))*51
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16696
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(24\right) e^{ \left(53\right) x} ( \left(53\right) x-1)}{ \left(53\right) x \left( \left(66\right) e^{ \left(53\right) x}+ \left(53\right) \left(16\right) x\right)} dx$
|
-53**(-1)*66**(-1)*log((e**2*66 + 2*16)**(-1)*(2*e*66 + 2*16))*24
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16697
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(57\right) e^{ \left(66\right) x} ( \left(66\right) x-1)}{ \left(66\right) x \left( \left(31\right) e^{ \left(66\right) x}+ \left(66\right) \left(19\right) x\right)} dx$
|
-66**(-1)*31**(-1)*log((e**2*31 + 2*19)**(-1)*(2*e*31 + 2*19))*57
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16698
|
Solve the following integral.
$\int_{1}^{2} \frac{ \left(43\right) e^{ \left(76\right) x} ( \left(76\right) x-1)}{ \left(76\right) x \left( \left(99\right) e^{ \left(76\right) x}+ \left(76\right) \left(79\right) x\right)} dx$
|
-76**(-1)*99**(-1)*log((e**2*99 + 2*79)**(-1)*(2*e*99 + 2*79))*43
|
Numeric-All-2-S
|
OBMU 2019 - Q18
|
|
16699
|
Solve the following integral.
Solve the following integral:
$\int_{0}^{\pi} \left(64\right) \log( \left(12\right) (\sin(x))^{1 \left(87\right) }) dx$
|
pi*log(2**(-87)*12)*64
|
Numeric-All-2-S
|
OBMU 2019 - Q22
|
|
16700
|
Solve the following integral.
Solve the following integral:
$\int_{0}^{\pi} \left(88\right) \log( \left(21\right) (\sin(x))^{1 \left(59\right) }) dx$
|
pi*log(2**(-59)*21)*88
|
Numeric-All-2-S
|
OBMU 2019 - Q22
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.