See axolotl config
axolotl version: 0.13.0.dev0
# ===== Modelo =====
base_model: meta-llama/Llama-3.1-8B
tokenizer_type: AutoTokenizer
trust_remote_code: true
# Llama 3.1 é derivado de Llama, isso ajuda Axolotl a aplicar otmizações corretas
is_llama_derived_model: true
# Template de conversa
chat_template: chatml
plugins:
- axolotl.integrations.liger.LigerPlugin
special_tokens:
pad_token: "<|eot_id|>"
# ===== Dataset (Nemotron Post-Training SFT) =====
datasets:
- path: nvidia/Llama-Nemotron-Post-Training-Dataset
name: SFT # subset da HF
split: chat # você pode duplicar este bloco para math_v1.1, science, etc.
type: chat_template
field_messages: input # coluna com a lista de {role, content}
# Se os campos já forem "role" e "content", não precisa do mapping abaixo.
message_property_mappings:
role: role
content: content
# A coluna "output" é a resposta; o Axolotl converte input+output em conversa interna.
field_output: output
# Não treinar nos tokens do usuário/system
train_on_inputs: false
# ===== Comprimento de contexto =====
sequence_len: 8192
eval_sequence_len: 8192
pad_to_sequence_len: true
sample_packing: true
sample_packing_group_size: 100000
sample_packing_bin_size: 200
group_by_length: true
# ===== Batch / epochs – hiperparâmetros do paper =====
micro_batch_size: 1 # per-device batch size
gradient_accumulation_steps: 8 # 4 GPUs -> effective batch = 32
num_epochs: 2
# (opcional) se quiser deixar explícito que você tem 4 GPUs para DP
# dp_shard_size: 4
# ===== Otimizador / LR =====
learning_rate: 2.0e-5
optimizer: adamw_torch_fused
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1.0e-8
lr_scheduler: cosine
warmup_steps: 100
weight_decay: 0.0 # paper não especifica, então deixei 0.0 (padrão)
# ===== Precisão / memória =====
bf16: true # ou "auto" se preferir
tf32: true
gradient_checkpointing: true
activation_offloading: false
# ===== Eval / logging / checkpoints =====
val_set_size: 0.01 # 1% do dataset para validação (ajuste se quiser)
eval_strategy: steps
eval_steps: 100
save_strategy: steps
save_steps: 100
save_total_limit: 3
save_only_model: false
save_safetensors: true
load_best_model_at_end: true
metric_for_best_model: eval_loss
greater_is_better: false
logging_steps: 10
# ===== Saída / reproducibilidade / tracking =====
output_dir: ./outputs/llama31_8b_nemotron_full_sft
seed: 42
use_wandb: true
wandb_project: "llama31_nemotron_sft"
wandb_name: "llama31-8b-full-sft-chatml"
outputs/llama31_8b_nemotron_full_sft
This model is a fine-tuned version of meta-llama/Llama-3.1-8B on the nvidia/Llama-Nemotron-Post-Training-Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.6628
- Memory/max Active (gib): 61.65
- Memory/max Allocated (gib): 61.65
- Memory/device Reserved (gib): 88.96
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 570
Training results
| Training Loss | Epoch | Step | Validation Loss | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 3.7258 | 27.81 | 27.81 | 28.15 |
| 1.2797 | 0.3498 | 100 | 1.2345 | 61.65 | 61.65 | 87.65 |
| 0.9685 | 0.6996 | 200 | 0.9419 | 61.65 | 61.65 | 88.96 |
| 0.5627 | 1.0490 | 300 | 0.7959 | 61.65 | 61.65 | 88.27 |
| 0.4859 | 1.3988 | 400 | 0.6849 | 61.65 | 61.65 | 88.96 |
| 0.4636 | 1.7486 | 500 | 0.6628 | 61.65 | 61.65 | 88.96 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0+cu130
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 13
Model tree for cemig-temp/llama3.1-8B-base-data-nemotron
Base model
meta-llama/Llama-3.1-8B