SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
This is a sentence-transformers model finetuned from l3cube-pune/indic-sentence-similarity-sbert. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: l3cube-pune/indic-sentence-similarity-sbert
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ammumadhu/Indic_Bert-8-layers")
# Run inference
sentences = [
'Men are outdoors.',
'A man is outside.',
'A Little girl is enjoying cake outside.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.6061 |
| spearman_cosine | 0.6316 |
| pearson_manhattan | 0.4868 |
| spearman_manhattan | 0.5132 |
| pearson_euclidean | 0.506 |
| spearman_euclidean | 0.5306 |
| pearson_dot | 0.2198 |
| spearman_dot | 0.2098 |
| pearson_max | 0.6061 |
| spearman_max | 0.6316 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
| Metric | Value |
|---|---|
| negative_mse | -3.0273 |
Semantic Similarity
- Dataset:
sts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.7909 |
| spearman_cosine | 0.7965 |
| pearson_manhattan | 0.776 |
| spearman_manhattan | 0.773 |
| pearson_euclidean | 0.7764 |
| spearman_euclidean | 0.7736 |
| pearson_dot | 0.6959 |
| spearman_dot | 0.6843 |
| pearson_max | 0.7909 |
| spearman_max | 0.7965 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,147,385 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 4 tokens
- mean: 12.59 tokens
- max: 52 tokens
- size: 768 elements
- Samples:
sentence label A person on a horse jumps over a broken down airplane.[-0.0009042086312547326, 0.02319158799946308, 0.016657305881381035, -0.004571350757032633, -0.008184989914298058, ...]Children smiling and waving at camera[-0.020024249330163002, -0.0005705401999875903, 0.025419672951102257, -0.014105383306741714, 0.009407470934092999, ...]A boy is jumping on skateboard in the middle of a red bridge.[-0.01713346689939499, -2.3264645278686658e-05, -0.0005397812929004431, 0.002506087301298976, 0.027286207303404808, ...] - Loss:
MSELoss
Evaluation Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 10,000 evaluation samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 13.53 tokens
- max: 61 tokens
- size: 768 elements
- Samples:
sentence label Two women are embracing while holding to go packages.[-0.000599742284975946, 0.0042074089869856834, 0.0013686479069292545, -0.0009170330595225096, -0.010106148198246956, ...]Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.[0.003711540251970291, -0.005768307950347662, -0.03475787863135338, 0.010626137256622314, -0.0023863380774855614, ...]A man selling donuts to a customer during a world exhibition event held in the city of Angeles[-0.014246350154280663, 0.015385480597615242, 0.0016394935082644224, -0.013386472128331661, -0.015061145648360252, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 0.0001num_train_epochs: 1warmup_ratio: 0.1fp16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0 | 0 | - | -3.0273 | 0.6316 | - |
| 0.2231 | 1000 | 0.0015 | - | - | - |
| 0.4462 | 2000 | 0.0001 | - | - | - |
| 0.6693 | 3000 | 0.0001 | - | - | - |
| 0.8925 | 4000 | 0.0001 | - | - | - |
| 1.0 | 4482 | - | - | - | 0.7965 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.0
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 6
Model tree for ammumadhu/Indic_Bert-8-layers
Base model
l3cube-pune/indic-sentence-similarity-sbertEvaluation results
- Pearson Cosine on sts devself-reported0.606
- Spearman Cosine on sts devself-reported0.632
- Pearson Manhattan on sts devself-reported0.487
- Spearman Manhattan on sts devself-reported0.513
- Pearson Euclidean on sts devself-reported0.506
- Spearman Euclidean on sts devself-reported0.531
- Pearson Dot on sts devself-reported0.220
- Spearman Dot on sts devself-reported0.210
- Pearson Max on sts devself-reported0.606
- Spearman Max on sts devself-reported0.632