videberta-base_v1

This model is a fine-tuned version of Fsoft-AIC/videberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4110
  • Accuracy: 0.8882
  • Precision Macro: 0.7636
  • Recall Macro: 0.7197
  • F1 Macro: 0.7363
  • F1 Weighted: 0.8843

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
0.8764 1.0 90 0.7142 0.6974 0.4684 0.4901 0.4759 0.6809
0.682 2.0 180 0.5610 0.7701 0.5261 0.5431 0.5253 0.7514
0.5221 3.0 270 0.4966 0.8294 0.5546 0.5817 0.5660 0.8102
0.429 4.0 360 0.4697 0.8395 0.6756 0.5881 0.5807 0.8204
0.3652 5.0 450 0.4085 0.8642 0.7889 0.6334 0.6442 0.8503
0.3638 6.0 540 0.4011 0.8743 0.8328 0.6359 0.6447 0.8591
0.3148 7.0 630 0.3770 0.8806 0.8160 0.6770 0.7037 0.8712
0.2928 8.0 720 0.3874 0.8825 0.8480 0.6751 0.7020 0.8724
0.2705 9.0 810 0.3800 0.8793 0.7808 0.7026 0.7254 0.8737
0.2397 10.0 900 0.3699 0.8882 0.8000 0.6991 0.7257 0.8810
0.2325 11.0 990 0.3837 0.8863 0.8213 0.6647 0.6855 0.8745
0.2158 12.0 1080 0.3721 0.8857 0.7843 0.7061 0.7296 0.8798
0.1985 13.0 1170 0.3878 0.8907 0.8037 0.7090 0.7362 0.8844
0.2035 14.0 1260 0.3784 0.8857 0.7685 0.7173 0.7363 0.8815
0.1805 15.0 1350 0.4019 0.8850 0.7565 0.7005 0.7193 0.8795
0.1808 16.0 1440 0.4085 0.8882 0.7732 0.7114 0.7322 0.8831
0.1646 17.0 1530 0.3906 0.8831 0.7496 0.7368 0.7427 0.8819
0.1687 18.0 1620 0.3998 0.8857 0.7606 0.7306 0.7431 0.8831
0.1636 19.0 1710 0.4107 0.8863 0.7594 0.7184 0.7341 0.8826
0.1634 20.0 1800 0.4110 0.8882 0.7636 0.7197 0.7363 0.8843

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
3
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for aiface/videberta-base_v1

Finetuned
(15)
this model

Evaluation results