InedxsAI - PEFT LoRA Adapter
Fine-tuned LoRA adapter for Qwen2-7B-Instruct specialized in conversational AI and instruction following.
π Model Details
- Base Model: Qwen/Qwen2-7B-Instruct
- Training Method: PEFT (Parameter-Efficient Fine-Tuning)
- Model Type: Full Fine-Tuned Adapter
- Languages: French (primary), English
- Adapter Size: ~11.5 GB
- License: Apache 2.0
Note: This is a comprehensive fine-tune with extensive parameter modifications, resulting in a larger adapter size compared to typical LoRA adapters. This enables more significant model adaptations while maintaining compatibility with PEFT infrastructure.
π Quick Start
Installation
pip install transformers peft torch
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-7B-Instruct",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
# Load adapter
model = PeftModel.from_pretrained(
base_model,
"InedxsAI/Inedxs.AI"
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"Qwen/Qwen2-7B-Instruct",
trust_remote_code=True
)
# Generate
prompt = "Bonjour, qui es-tu ?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
π Training Details
Training Configuration
- Framework: PEFT 0.17.1
- LoRA Rank: Optimized for conversational tasks
- Target Modules: Attention and feedforward layers
- Training Precision: Mixed precision (FP16/BF16)
Training Data
Fine-tuned on conversational datasets focusing on:
- Instruction following
- Dialogue and conversation
- Question answering
- Task completion
π― Intended Uses
Primary Use Cases
- Conversational AI assistants
- Instruction-following chatbots
- Interactive question-answering systems
- General-purpose dialogue agents
Out-of-Scope Uses
- Medical diagnosis or advice
- Legal counseling
- Financial advice without proper disclaimers
- Generating harmful or malicious content
β‘ Performance
This adapter enhances Qwen2-7B-Instruct's capabilities in:
- Conversational coherence
- Instruction understanding
- Task-specific responses
- Multi-turn dialogue
π§ Integration Options
Option 1: Merge with Base Model
# Merge adapter for inference
merged_model = model.merge_and_unload()
merged_model.save_pretrained("./merged_model")
Option 2: Convert to GGUF
For efficient inference with llama.cpp or Ollama, see the quantized version: π InedxsAI/Inedxs.AI-GGUF
π‘οΈ Limitations & Biases
- Inherits limitations from base Qwen2-7B-Instruct model
- May exhibit biases present in training data
- Performance varies with prompt quality and context
- Not suitable for critical decision-making without human oversight
π Citation
@misc{inedxsai2025,
title={InedxsAI: PEFT Adapter for Qwen2-7B-Instruct},
author={InedxsAI},
year={2025},
howpublished={\url{https://huggingface.co/InedxsAI/Inedxs.AI}}
}
π Related Resources
- Base Model: Qwen/Qwen2-7B-Instruct
- GGUF Version: InedxsAI/Inedxs.AI-GGUF
- Framework: PEFT by Hugging Face
π§ Contact
For questions or issues, please open an issue on the model repository.
Made with β€οΈ by InedxsAI
- Downloads last month
- 1