Qwen2.5-7B-RA-SFT / README.md
Lingaaaaaaa's picture
Update README.md
f9a7c9f verified
<div align="center">
<h1>Demystifying Reinforcement Learning in Agentic Reasoning<h1>
<p align="center"> <a href="https://arxiv.org/abs/2510.11701"> <img src="https://img.shields.io/badge/Paper-Arxiv-red?logo=arxiv&logoColor=red" alt="Paper on arXiv"/> </a> <a href="https://github.com/Gen-Verse/Open-AgentRL"> <img src="https://img.shields.io/badge/Open--AgentRL-GitHub-black?logo=github&logoColor=white" alt="Open-AgentRL on GitHub"/> </a> <a href="https://huggingface.co/datasets/Gen-Verse/Open-AgentRL-30K"> <img src="https://img.shields.io/badge/30K_RL_Dataset-Hugging%20Face-orange?logo=huggingface&logoColor=yellow" alt="30K RL Dataset"/> </a> <a href="https://huggingface.co/Gen-Verse/DemyAgent-4B"> <img src="https://img.shields.io/badge/DemyAgent--4B-Hugging%20Face-FFCC00?logo=huggingface&logoColor=yellow" alt="DemyAgent-4B Model"/> </a> </p> </div>
## 🎯 About This Repository
This repository contains the **Qwen2.5-7B-RA-SFT** model weights, a 7B-sized agentic reasoning model that is finetuned with our 3k Agentic SFT dataset, based on [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
## 🌟 Introduction
In our work, we systematically investigate three dimensions of agentic RL: **data, algorithms, and reasoning modes**. Our findings reveal:
- 🎯 **Data Quality Matters**: Real end-to-end trajectories and high-diversity datasets significantly outperform synthetic alternatives
- ⚑ **Training Efficiency**: Exploration-friendly techniques like reward clipping and entropy maintenance boost training efficiency
- 🧠 **Reasoning Strategy**: Deliberative reasoning with selective tool calls surpasses frequent invocation or verbose self-reasoning
We contribute high-quality SFT and RL datasets, demonstrating that **simple recipes enable even 4B models to outperform 32B models** on the most challenging reasoning benchmarks.
## πŸ“¦ Resources
| **Type** | **Name** | **Link** |
| --------- | ------------------- | ------------------------------------------------------------ |
| πŸ“Š Dataset | 3K Agentic SFT Data | [πŸ€— HuggingFace](https://huggingface.co/datasets/Gen-Verse/Open-AgentRL-SFT-3K) |
| πŸ“Š Dataset | 30K Agentic RL Data | [πŸ€— HuggingFace](https://huggingface.co/datasets/Gen-Verse/Open-AgentRL-30K) |
| πŸ€– Model | **Qwen2.5-7B-RA-SFT** | [πŸ€— HuggingFace](https://huggingface.co/Gen-Verse/Qwen2.5-7B-RA-SFT) |
| πŸ€– Model | Qwen3-4B-RA-SFT | [πŸ€— HuggingFace](https://huggingface.co/Gen-Verse/Qwen3-4B-RA-SFT) |
| πŸ€– Model | DemyAgent-4B | [πŸ€— HuggingFace](https://huggingface.co/Gen-Verse/DemyAgent-4B) |
## πŸ“ Citation
```bibtex
@article{yu2025demystify,
title={Demystifying Reinforcement Learning in Agentic Reasoning},
author={Yu, Zhaochen and Yang, Ling and Zou, Jiaru and Yan, Shuicheng and Wang, Mengdi},
journal={arXiv preprint arXiv:2510.11701},
year={2025}
}
```