| from typing import Dict, Any | |
| from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
| from PIL import Image | |
| import io | |
| import base64 | |
| import requests | |
| class EndpointHandler(): | |
| def __init__(self, path=""): | |
| self.processor = AutoProcessor.from_pretrained(path) | |
| self.model = Qwen2VLForConditionalGeneration.from_pretrained(path) | |
| def __call__(self, data: Any) -> Dict[str, Any]: | |
| image_input = data.get('image', None) | |
| text_input = data.get('text', None) | |
| if isinstance(data, dict): | |
| if image_input.startswith('http'): | |
| image = Image.open(requests.get(image_input, stream=True).raw).convert('RGB') | |
| else: | |
| image_data = base64.b64decode(image_input) | |
| image = Image.open(io.BytesIO(image_data)).convert('RGB') | |
| else: | |
| return {"error": "Invalid input data. Expected binary image data or a dictionary with 'image' key."} | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text_input}, | |
| ], | |
| } | |
| ] | |
| text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = self.processor( | |
| text=[text], | |
| images=[image], | |
| padding=True, | |
| return_tensors="pt", | |
| ).to(self.device) | |
| generate_ids = self.model.generate(inputs.input_ids, max_length=30) | |
| output_text = self.processor.batch_decode( | |
| generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| )[0] | |
| return {"generated_text": output_text} | |