Update handler.py
Browse files- handler.py +6 -12
handler.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
from typing import Dict, Any
|
| 2 |
-
import torch
|
| 3 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 4 |
from PIL import Image
|
| 5 |
import io
|
|
@@ -8,21 +7,16 @@ import requests
|
|
| 8 |
|
| 9 |
class EndpointHandler():
|
| 10 |
def __init__(self, path=""):
|
| 11 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
-
self.model = Qwen2VLForConditionalGeneration.from_pretrained(path).to(self.device)
|
| 13 |
self.processor = AutoProcessor.from_pretrained(path)
|
|
|
|
| 14 |
|
| 15 |
def __call__(self, data: Any) -> Dict[str, Any]:
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
text_input = default_prompt
|
| 21 |
-
elif isinstance(data, dict):
|
| 22 |
-
image_input = data.get('image', None)
|
| 23 |
-
text_input = data.get('text', default_prompt)
|
| 24 |
-
if image_input is None:
|
| 25 |
-
return {"error": "No image provided."}
|
| 26 |
if image_input.startswith('http'):
|
| 27 |
image = Image.open(requests.get(image_input, stream=True).raw).convert('RGB')
|
| 28 |
else:
|
|
|
|
| 1 |
from typing import Dict, Any
|
|
|
|
| 2 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 3 |
from PIL import Image
|
| 4 |
import io
|
|
|
|
| 7 |
|
| 8 |
class EndpointHandler():
|
| 9 |
def __init__(self, path=""):
|
|
|
|
|
|
|
| 10 |
self.processor = AutoProcessor.from_pretrained(path)
|
| 11 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(path)
|
| 12 |
|
| 13 |
def __call__(self, data: Any) -> Dict[str, Any]:
|
| 14 |
+
|
| 15 |
+
image_input = data.get('image', None)
|
| 16 |
+
text_input = data.get('text', None)
|
| 17 |
|
| 18 |
+
|
| 19 |
+
if isinstance(data, dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
if image_input.startswith('http'):
|
| 21 |
image = Image.open(requests.get(image_input, stream=True).raw).convert('RGB')
|
| 22 |
else:
|