# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team and Gemma2MoE Contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Gemma2MoE model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class Gemma2MoeConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Gemma2MoeModel`]. It is used to instantiate an Gemma2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemma-2-9b but with MoE capabilities. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. """ model_type = "gemma2moe" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=256000, hidden_size=3584, intermediate_size=14336, num_hidden_layers=42, num_attention_heads=16, num_key_value_heads=8, head_dim=256, hidden_act="gelu_pytorch_tanh", max_position_embeddings=8192, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, # Gemma 2 Specific Args query_pre_attn_scalar=224, # 1/sqrt(head_dim) yerine Gemma2'ye özel scaling (genelde hidden_size temelli) sliding_window=4096, # Sliding Window Attention window size logit_soft_capping=30.0, # Final logit soft capping attn_logit_soft_capping=50.0, # Attention scores soft capping # MoE Arguments num_experts_per_tok=2, num_local_experts=8, router_aux_loss_coef=0.001, output_router_logits=False, router_jitter_noise=0.0, # Opsiyonel: Router stabilitesi için jitter **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # Grouped Query Attention (GQA) kontrolü if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.head_dim = head_dim self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout # Gemma 2 Specifics self.query_pre_attn_scalar = query_pre_attn_scalar self.sliding_window = sliding_window self.logit_soft_capping = logit_soft_capping self.attn_logit_soft_capping = attn_logit_soft_capping # MoE Specifics self.num_experts_per_tok = num_experts_per_tok self.num_local_experts = num_local_experts self.router_aux_loss_coef = router_aux_loss_coef self.output_router_logits = output_router_logits self.router_jitter_noise = router_jitter_noise super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )