when i load Llama-3.2-3B-Instruct-Q5_K_L.gguf with llama.cpp, it succeeded, but when i try to train the model with data of mine, it failed, log as following:
18:35:21-574250 WARNING LoRA training has only currently been validated for
LLaMA, OPT, GPT-J, and GPT-NeoX models. **(**Found model
type: LlamaServer**)**
18:35:26-595624 INFO Loading JSON datasets
Map: 0%| | 0/3325 [00:00<?, ? examples/s]
Traceback (most recent call last):
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/gradio/queueing.py”, line 580, in process_events
response = await route_utils.call_process_api(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/gradio/route_utils.py”, line 276, in call_process_api
output = await app.get_blocks().process_api(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/gradio/blocks.py”, line 1928, in process_api
result = await self.call_function(
^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/gradio/blocks.py”, line 1526, in call_function
prediction = await utils.async_iteration(iterator)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/gradio/utils.py”, line 657, in async_iteration
return await iterator.\__anext_\_()
^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/gradio/utils.py”, line 650, in _anext_
return await anyio.to_thread.run_sync(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/anyio/to_thread.py”, line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/anyio/_backends/_asyncio.py”, line 2476, in run_sync_in_worker_thread
return await future
^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/anyio/_backends/_asyncio.py”, line 967, in run
result = context.run(func, \*args)
^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/gradio/utils.py”, line 633, in run_sync_iterator_async
return next(iterator)
^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/gradio/utils.py”, line 816, in gen_wrapper
response = next(iterator)
^^^^^^^^^^^^^^
File “/Users/Peter/text-generation-webui/modules/training.py”, line 486, in do_train
train_data = data\['train'\].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16\*\*30))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/datasets/arrow_dataset.py”, line 560, in wrapper
out: Union\["Dataset", "DatasetDict"\] = func(self, \*args, \*\*kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/datasets/arrow_dataset.py”, line 3318, in map
for rank, done, content in Dataset.\_map_single(\*\*unprocessed_kwargs):
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/datasets/arrow_dataset.py”, line 3650, in _map_single
for i, example in iter_outputs(shard_iterable):
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/datasets/arrow_dataset.py”, line 3624, in iter_outputs
yield i, apply_function(example, i, offset=offset)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/opt/anaconda3/envs/textgen/lib/python3.11/site-packages/datasets/arrow_dataset.py”, line 3547, in apply_function
processed_inputs = function(\*fn_args, \*additional_args, \*\*fn_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/text-generation-webui/modules/training.py”, line 482, in generate_and_tokenize_prompt
return tokenize(prompt, add_eos_token)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/text-generation-webui/modules/training.py”, line 367, in tokenize
input_ids = encode(prompt, True)
^^^^^^^^^^^^^^^^^^^^
File “/Users/Peter/text-generation-webui/modules/training.py”, line 357, in encode
if len(result) >= 2 and result\[:2\] == \[shared.tokenizer.bos_token_id, shared.tokenizer.bos_token_id\]:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: ‘LlamaServer’ object has no attribute ‘bos_token_id’