Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,7 +31,7 @@ def load_model():
|
|
| 31 |
adapter_id = "tugrulkaya/GeoQwen-VL-2B-EuroSAT"
|
| 32 |
|
| 33 |
if DEVICE == "cuda":
|
| 34 |
-
# GPU Varsa: 4-bit quantization
|
| 35 |
bnb_config = BitsAndBytesConfig(
|
| 36 |
load_in_4bit=True,
|
| 37 |
bnb_4bit_quant_type="nf4",
|
|
@@ -45,124 +45,5 @@ def load_model():
|
|
| 45 |
_attn_implementation="flash_attention_2"
|
| 46 |
)
|
| 47 |
else:
|
| 48 |
-
# CPU (Hugging Face Spaces Free Tier)
|
| 49 |
-
#
|
| 50 |
-
# 2B model RAM'e (16GB) rahatça sığar. Diske taşımak hataya sebep oluyor.
|
| 51 |
-
base_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 52 |
-
model_id,
|
| 53 |
-
torch_dtype=torch.float32,
|
| 54 |
-
trust_remote_code=True,
|
| 55 |
-
_attn_implementation="eager" # CPU için kritik
|
| 56 |
-
).to("cpu")
|
| 57 |
-
|
| 58 |
-
# LoRA Adaptörünü Yükle
|
| 59 |
-
# Burada da offload_folder argümanını kaldırdık
|
| 60 |
-
model = PeftModel.from_pretrained(
|
| 61 |
-
base_model,
|
| 62 |
-
adapter_id
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
# Modeli değerlendirme moduna al
|
| 66 |
-
model.eval()
|
| 67 |
-
|
| 68 |
-
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 69 |
-
print("✅ Model başarıyla yüklendi!")
|
| 70 |
-
return model, processor
|
| 71 |
-
|
| 72 |
-
except Exception as e:
|
| 73 |
-
print(f"❌ Model yükleme hatası detaylı: {str(e)}")
|
| 74 |
-
# Hatayı gradio ekranında da görmek için tekrar fırlatabiliriz ama
|
| 75 |
-
# uygulamanın çökmemesi için loglayıp devam ediyoruz.
|
| 76 |
-
raise e
|
| 77 |
-
|
| 78 |
-
# Global değişkenler
|
| 79 |
-
model, processor = load_model()
|
| 80 |
-
|
| 81 |
-
# --- SINIFLANDIRMA FONKSİYONU ---
|
| 82 |
-
def classify_satellite_image(image):
|
| 83 |
-
if image is None:
|
| 84 |
-
return "⚠️ Lütfen bir görüntü yükleyin.", ""
|
| 85 |
-
|
| 86 |
-
try:
|
| 87 |
-
if not isinstance(image, Image.Image):
|
| 88 |
-
image = Image.fromarray(image)
|
| 89 |
-
|
| 90 |
-
# Prompt
|
| 91 |
-
messages = [
|
| 92 |
-
{
|
| 93 |
-
"role": "user",
|
| 94 |
-
"content": [
|
| 95 |
-
{"type": "image", "image": image},
|
| 96 |
-
{"type": "text", "text": "Classify this satellite image into one of the following land use categories: AnnualCrop, Forest, HerbaceousVegetation, Highway, Industrial, Pasture, PermanentCrop, Residential, River, SeaLake. Only respond with the category name."}
|
| 97 |
-
]
|
| 98 |
-
}
|
| 99 |
-
]
|
| 100 |
-
|
| 101 |
-
# Girdileri hazırla
|
| 102 |
-
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 103 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
| 104 |
-
|
| 105 |
-
inputs = processor(
|
| 106 |
-
text=[text],
|
| 107 |
-
images=image_inputs,
|
| 108 |
-
videos=video_inputs,
|
| 109 |
-
padding=True,
|
| 110 |
-
return_tensors="pt"
|
| 111 |
-
).to(model.device)
|
| 112 |
-
|
| 113 |
-
# Tahmin
|
| 114 |
-
with torch.no_grad():
|
| 115 |
-
generated_ids = model.generate(
|
| 116 |
-
**inputs,
|
| 117 |
-
max_new_tokens=32,
|
| 118 |
-
do_sample=False
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
# Çıktıyı işle
|
| 122 |
-
generated_ids_trimmed = [
|
| 123 |
-
out_ids[len(in_ids):]
|
| 124 |
-
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 125 |
-
]
|
| 126 |
-
|
| 127 |
-
result = processor.batch_decode(
|
| 128 |
-
generated_ids_trimmed,
|
| 129 |
-
skip_special_tokens=True,
|
| 130 |
-
clean_up_tokenization_spaces=False
|
| 131 |
-
)[0].strip()
|
| 132 |
-
|
| 133 |
-
# Temizlik
|
| 134 |
-
clean_result = result.replace('.', '').strip()
|
| 135 |
-
|
| 136 |
-
if clean_result in CLASS_DESCRIPTIONS:
|
| 137 |
-
formatted_result = CLASS_DESCRIPTIONS[clean_result]
|
| 138 |
-
display_text = f"### 🎯 Sonuç: {formatted_result}\n\n**Orijinal Sınıf:** `{clean_result}`"
|
| 139 |
-
else:
|
| 140 |
-
display_text = f"### 🤖 Model Çıktısı: {result}"
|
| 141 |
-
|
| 142 |
-
return display_text, result
|
| 143 |
-
|
| 144 |
-
except Exception as e:
|
| 145 |
-
return f"❌ Hata: {str(e)}", "Error"
|
| 146 |
-
|
| 147 |
-
# --- ARAYÜZ ---
|
| 148 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 149 |
-
|
| 150 |
-
gr.HTML("""
|
| 151 |
-
<div style="text-align: center; padding: 20px;">
|
| 152 |
-
<h1 style="font-size: 2.5em; margin-bottom: 10px;">🛰️ GeoQwen-VL-2B-EuroSAT</h1>
|
| 153 |
-
<p style="font-size: 1.2em; color: #666;">Uydu Görüntülerinden Arazi Sınıflandırma</p>
|
| 154 |
-
</div>
|
| 155 |
-
""")
|
| 156 |
-
|
| 157 |
-
with gr.Row():
|
| 158 |
-
with gr.Column():
|
| 159 |
-
input_image = gr.Image(label="Uydu Görüntüsü Yükle", type="pil", height=300)
|
| 160 |
-
classify_btn = gr.Button("🔍 Sınıflandır", variant="primary", size="lg")
|
| 161 |
-
|
| 162 |
-
with gr.Column():
|
| 163 |
-
output_text = gr.Markdown(label="Analiz Sonucu", value="*Görüntü bekleniyor...*")
|
| 164 |
-
output_raw = gr.Textbox(label="Ham Çıktı", interactive=False)
|
| 165 |
-
|
| 166 |
-
gr.HTML("""
|
| 167 |
-
<div style="margin-top: 20px; padding: 10px; background-color: #f0f0f0; border-radius: 5px;">
|
| 168 |
-
<p style="margin:0"><b>Not:</b>
|
|
|
|
| 31 |
adapter_id = "tugrulkaya/GeoQwen-VL-2B-EuroSAT"
|
| 32 |
|
| 33 |
if DEVICE == "cuda":
|
| 34 |
+
# GPU Varsa: 4-bit quantization
|
| 35 |
bnb_config = BitsAndBytesConfig(
|
| 36 |
load_in_4bit=True,
|
| 37 |
bnb_4bit_quant_type="nf4",
|
|
|
|
| 45 |
_attn_implementation="flash_attention_2"
|
| 46 |
)
|
| 47 |
else:
|
| 48 |
+
# CPU (Hugging Face Spaces Free Tier)
|
| 49 |
+
# Offload ve device_map="auto" KAL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|