import torch import numpy as np import gradio as gr from transformers import AutoProcessor, AutoModel, pipeline, MarianMTModel, MarianTokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # load text-to-speech checkpoint and speaker embeddings processor = AutoProcessor.from_pretrained("suno/bark-small") model = AutoModel.from_pretrained("suno/bark-small").to(device) # load MartianMT model for translating English to Hindi. martian_mt_model = MarianMTModel.from_pretrained("AbhirupGhosh/opus-mt-finetuned-en-hi") martian_mt_tokenizer = MarianTokenizer.from_pretrained("AbhirupGhosh/opus-mt-finetuned-en-hi") def translate_english_to_hindi(english_text): tokenized_text = martian_mt_tokenizer.encode(english_text, return_tensors="pt") generated_token_ids = martian_mt_model.generate(tokenized_text, use_cache=True) hindi_text = martian_mt_tokenizer.decode(generated_token_ids.numpy()[0]) hindi_text = hindi_text.replace("", "") hindi_text = hindi_text.replace("", "") return hindi_text def translate_to_english(audio): outputs = asr_pipe(audio, generate_kwargs={"task": "transcribe", "use_cache":"True"}) return outputs["text"] def synthesise(text): inputs = processor(text=text, return_tensors="pt").to(device) speech_values = model.generate(**inputs, use_cache=True) speech_values = speech_values.cpu().numpy() return speech_values def speech_to_hindi_translation(audio): english_text = translate_to_english(audio) hindi_text = translate_english_to_hindi(english_text) synthesised_speech = synthesise(hindi_text)[0] synthesised_speech = (synthesised_speech * 32767).astype(np.int16) return 22050, synthesised_speech title = "Speech-To-Speech-Translation for Hindi" description = """ ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_hindi_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_hindi_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), # examples=["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch(debug=True)