Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,47 @@
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
import gradio as gr
|
| 4 |
-
from transformers import AutoProcessor,
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
# load speech translation checkpoint
|
| 10 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 11 |
|
| 12 |
-
# load text-to-speech checkpoint
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# load MartianMT model for translating English to Hindi.
|
| 17 |
-
martian_mt_model = MarianMTModel.from_pretrained("AbhirupGhosh/opus-mt-finetuned-en-hi")
|
| 18 |
-
martian_mt_tokenizer = MarianTokenizer.from_pretrained("AbhirupGhosh/opus-mt-finetuned-en-hi")
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
hindi_text = martian_mt_tokenizer.decode(generated_token_ids.numpy()[0])
|
| 25 |
-
hindi_text = hindi_text.replace("</s>", "")
|
| 26 |
-
hindi_text = hindi_text.replace("<pad>", "")
|
| 27 |
|
| 28 |
-
return hindi_text
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
return outputs["text"]
|
| 34 |
|
| 35 |
def synthesise(text):
|
| 36 |
-
inputs =
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
def
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
synthesised_speech = (synthesised_speech * 32767).astype(np.int16)
|
| 47 |
|
| 48 |
-
return
|
| 49 |
|
| 50 |
|
| 51 |
title = "Speech-To-Speech-Translation for Hindi"
|
|
@@ -56,7 +52,7 @@ description = """
|
|
| 56 |
demo = gr.Blocks()
|
| 57 |
|
| 58 |
mic_translate = gr.Interface(
|
| 59 |
-
fn=
|
| 60 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 61 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 62 |
title=title,
|
|
@@ -64,7 +60,7 @@ mic_translate = gr.Interface(
|
|
| 64 |
)
|
| 65 |
|
| 66 |
file_translate = gr.Interface(
|
| 67 |
-
fn=
|
| 68 |
inputs=gr.Audio(source="upload", type="filepath"),
|
| 69 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 70 |
# examples=["./example.wav"]],
|
|
@@ -75,4 +71,4 @@ file_translate = gr.Interface(
|
|
| 75 |
with demo:
|
| 76 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 77 |
|
| 78 |
-
demo.launch(debug=
|
|
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
import gradio as gr
|
| 4 |
+
from transformers import AutoProcessor, SpeechT5ForTextToSpeech, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, SpeechT5HifiGan
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
|
| 7 |
+
device = "cpu"
|
|
|
|
| 8 |
|
| 9 |
# load speech translation checkpoint
|
| 10 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 11 |
|
| 12 |
+
# load text-to-speech checkpoint
|
| 13 |
+
tts_processor = AutoProcessor.from_pretrained("susnato/speecht5_finetuned_voxpopuli_nl")
|
| 14 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained("susnato/speecht5_finetuned_voxpopuli_nl").to(device)
|
| 15 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# load speaker embeddings
|
| 18 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 19 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
+
def transcribe(audio):
|
| 23 |
+
outputs = asr_pipe(audio, generate_kwargs={"task": "transcribe",
|
| 24 |
+
"language":"nl",
|
| 25 |
+
"use_cache":True,
|
| 26 |
+
"max_new_tokens":128})
|
| 27 |
return outputs["text"]
|
| 28 |
|
| 29 |
def synthesise(text):
|
| 30 |
+
inputs = tts_processor(text=text,
|
| 31 |
+
truncation=True,
|
| 32 |
+
return_tensors="pt")
|
| 33 |
+
speech = tts_model.generate_speech(inputs["input_ids"].to(device),
|
| 34 |
+
speaker_embeddings.to(device),
|
| 35 |
+
vocoder=vocoder,
|
| 36 |
+
)
|
| 37 |
+
return speech.cpu().numpy()
|
| 38 |
|
| 39 |
+
def speech_to_dutch_translation(audio):
|
| 40 |
+
dutch_text = transcribe(audio)
|
| 41 |
+
speech = synthesise(dutch_text)
|
| 42 |
+
speech = (speech * 32767).astype(np.int16)
|
|
|
|
| 43 |
|
| 44 |
+
return 16_000, speech
|
| 45 |
|
| 46 |
|
| 47 |
title = "Speech-To-Speech-Translation for Hindi"
|
|
|
|
| 52 |
demo = gr.Blocks()
|
| 53 |
|
| 54 |
mic_translate = gr.Interface(
|
| 55 |
+
fn=speech_to_dutch_translation,
|
| 56 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 57 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 58 |
title=title,
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
file_translate = gr.Interface(
|
| 63 |
+
fn=speech_to_dutch_translation,
|
| 64 |
inputs=gr.Audio(source="upload", type="filepath"),
|
| 65 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 66 |
# examples=["./example.wav"]],
|
|
|
|
| 71 |
with demo:
|
| 72 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 73 |
|
| 74 |
+
demo.launch(debug=False)
|