Spaces:
Sleeping
Sleeping
small changes
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import gc
|
|
| 3 |
from typing import List, Tuple, Dict
|
| 4 |
import json
|
| 5 |
import spaces
|
|
|
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import gradio as gr
|
|
@@ -26,80 +27,103 @@ if HF_TOKEN:
|
|
| 26 |
# -----------------------------
|
| 27 |
# Avoid meta-tensor init from environment leftovers
|
| 28 |
os.environ.pop("ACCELERATE_INIT_EMPTY_WEIGHTS", None)
|
| 29 |
-
|
| 30 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
-
print("Using device:", DEVICE)
|
| 32 |
-
torch.backends.cudnn.benchmark = True
|
| 33 |
-
|
| 34 |
PIPELINE=None
|
| 35 |
|
| 36 |
# -----------------------------
|
| 37 |
# Model / pipeline loading
|
| 38 |
# -----------------------------
|
| 39 |
-
@torch.no_grad()
|
| 40 |
-
def load_pipeline_single_gpu() -> FluxKontextSliderPipeline:
|
| 41 |
-
global PIPELINE, DEVICE
|
| 42 |
-
|
| 43 |
-
pretrained = "black-forest-labs/FLUX.1-Kontext-dev"
|
| 44 |
-
|
| 45 |
-
n_slider_layers = 4
|
| 46 |
-
slider_projector_out_dim = 6144
|
| 47 |
-
trained_models_path = "./model_weights/"
|
| 48 |
-
is_clip_input = True
|
| 49 |
-
|
| 50 |
-
# Load transformer fully on CPU; avoid meta tensors
|
| 51 |
-
transformer = FluxTransformer2DModelwithSliderConditioning.from_pretrained(
|
| 52 |
-
pretrained,
|
| 53 |
-
subfolder="transformer",
|
| 54 |
-
device_map=None,
|
| 55 |
-
low_cpu_mem_usage=False,
|
| 56 |
-
token=HF_TOKEN,
|
| 57 |
-
)
|
| 58 |
-
weight_dtype = transformer.dtype # keep checkpoint dtype
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
)
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
# Load projector weights on CPU
|
| 75 |
-
slider_projector_path = os.path.join(trained_models_path, "slider_projector.pth")
|
| 76 |
-
state_dict = torch.load(slider_projector_path, map_location='cpu')
|
| 77 |
-
print("state_dict keys: {}".format(state_dict.keys()))
|
| 78 |
-
|
| 79 |
-
slider_projector.load_state_dict(state_dict)
|
| 80 |
-
print(f"loaded slider_projector from {slider_projector_path}")
|
| 81 |
-
# ------------------------------- --------------------- --------------------------- #
|
| 82 |
-
|
| 83 |
-
# Build full pipeline on CPU; no device_map sharding
|
| 84 |
-
PIPELINE = FluxKontextSliderPipeline.from_pretrained(
|
| 85 |
-
pretrained,
|
| 86 |
-
transformer=transformer,
|
| 87 |
-
slider_projector=slider_projector,
|
| 88 |
-
torch_dtype=weight_dtype,
|
| 89 |
-
device_map=None,
|
| 90 |
-
low_cpu_mem_usage=False,
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
print("loading the pipeline lora weights from: {}".format(trained_models_path))
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
print(f"[init] Pipeline loaded on {DEVICE}")
|
| 103 |
|
| 104 |
|
| 105 |
# -----------------------------
|
|
@@ -287,23 +311,25 @@ def resize_image(img: Image.Image, target: int = 512) -> Image.Image:
|
|
| 287 |
img = img.resize((new_w, new_h), resample)
|
| 288 |
return img
|
| 289 |
|
| 290 |
-
@spaces.GPU
|
| 291 |
-
def _encode_prompt(prompt: str):
|
| 292 |
-
with torch.no_grad():
|
| 293 |
-
pe, ppe, _ = PIPELINE.encode_prompt(prompt, prompt_2=prompt)
|
| 294 |
-
return pe, ppe
|
| 295 |
-
|
| 296 |
-
|
| 297 |
# -----------------------------
|
| 298 |
# Inference functions
|
| 299 |
# -----------------------------
|
| 300 |
-
@spaces.GPU
|
| 301 |
@torch.no_grad()
|
| 302 |
-
def generate_image_stack_edits(text_prompt, n_edits, input_image
|
| 303 |
"""
|
| 304 |
Compute n_edits images on a single GPU for slider values in (0,1],
|
| 305 |
return (list_of_images, first_image) so the UI shows immediately.
|
| 306 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
if not input_image or not text_prompt or text_prompt.startswith("Please select"):
|
| 308 |
return [], None
|
| 309 |
|
|
@@ -312,7 +338,7 @@ def generate_image_stack_edits(text_prompt, n_edits, input_image, progress=gr.Pr
|
|
| 312 |
slider_values = [(i + 1) / float(n) for i in range(n)] # (0,1] inclusive
|
| 313 |
|
| 314 |
img = resize_image(input_image, 512)
|
| 315 |
-
pe, ppe =
|
| 316 |
|
| 317 |
results: List[Image.Image] = []
|
| 318 |
gen_base = 64 # deterministic seed base
|
|
@@ -350,14 +376,15 @@ def generate_image_stack_edits(text_prompt, n_edits, input_image, progress=gr.Pr
|
|
| 350 |
first = results[0] if results else None
|
| 351 |
return results, first
|
| 352 |
|
| 353 |
-
@spaces.GPU
|
| 354 |
-
def generate_single_image(text_prompt, slider_value, input_image
|
| 355 |
if not input_image or not text_prompt or text_prompt.startswith("Please select"):
|
| 356 |
return None
|
| 357 |
|
| 358 |
img = resize_image(input_image, 512)
|
| 359 |
sv = float(slider_value)
|
| 360 |
pe, ppe = _encode_prompt(text_prompt)
|
|
|
|
| 361 |
|
| 362 |
gen = torch.Generator(device=DEVICE if DEVICE != "cpu" else "cpu").manual_seed(64)
|
| 363 |
with torch.no_grad():
|
|
@@ -492,7 +519,14 @@ def process_user_upload(uploaded_image, user_prompt, n_edits_val):
|
|
| 492 |
|
| 493 |
return processed_image, generated_list, first_result, slider_update
|
| 494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
| 496 |
gr.Markdown("# Kontinuous Kontext - Continuous Strength Control for Instruction-based Image Editing")
|
| 497 |
|
| 498 |
# Add description section
|
|
|
|
| 3 |
from typing import List, Tuple, Dict
|
| 4 |
import json
|
| 5 |
import spaces
|
| 6 |
+
import traceback
|
| 7 |
|
| 8 |
import torch
|
| 9 |
import gradio as gr
|
|
|
|
| 27 |
# -----------------------------
|
| 28 |
# Avoid meta-tensor init from environment leftovers
|
| 29 |
os.environ.pop("ACCELERATE_INIT_EMPTY_WEIGHTS", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
PIPELINE=None
|
| 31 |
|
| 32 |
# -----------------------------
|
| 33 |
# Model / pipeline loading
|
| 34 |
# -----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
def _log(msg): print(msg, flush=True)
|
| 37 |
+
|
| 38 |
+
def load_pipeline_single_gpu():
|
| 39 |
+
global PIPELINE
|
| 40 |
+
if PIPELINE is not None:
|
| 41 |
+
_log("[worker] PIPELINE already initialized; skipping.")
|
| 42 |
+
return "warm"
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
os.environ.pop("ACCELERATE_INIT_EMPTY_WEIGHTS", None)
|
| 46 |
+
token = os.environ.get("HF_TOKEN")
|
| 47 |
+
cuda_ok = torch.cuda.is_available()
|
| 48 |
+
_log(f"[worker] cuda available: {cuda_ok}")
|
| 49 |
+
if cuda_ok:
|
| 50 |
+
torch.backends.cudnn.benchmark = True
|
| 51 |
+
|
| 52 |
+
# ---------- config ----------
|
| 53 |
+
pretrained = "black-forest-labs/FLUX.1-Kontext-dev"
|
| 54 |
+
trained_models_path = "./model_weights/"
|
| 55 |
+
projector_path = os.path.join(trained_models_path, "slider_projector.pth")
|
| 56 |
+
offload_dir = "/tmp/offload"; os.makedirs(offload_dir, exist_ok=True)
|
| 57 |
+
|
| 58 |
+
if not os.path.isdir(trained_models_path):
|
| 59 |
+
return f"error: missing dir {trained_models_path}"
|
| 60 |
+
if not os.path.isfile(projector_path):
|
| 61 |
+
return f"error: missing projector weights at {projector_path}"
|
| 62 |
+
|
| 63 |
+
# dtype selection to cut memory
|
| 64 |
+
if cuda_ok and torch.cuda.get_device_capability(0)[0] >= 8:
|
| 65 |
+
dtype = torch.bfloat16
|
| 66 |
+
elif cuda_ok:
|
| 67 |
+
dtype = torch.float16
|
| 68 |
+
else:
|
| 69 |
+
dtype = torch.float32
|
| 70 |
+
|
| 71 |
+
max_memory = {"cuda": "80GiB", "cpu": "60GiB"} # tune if needed
|
| 72 |
+
|
| 73 |
+
_log("[worker] loading transformer (sharded/offloaded)…")
|
| 74 |
+
transformer = FluxTransformer2DModelwithSliderConditioning.from_pretrained(
|
| 75 |
+
pretrained,
|
| 76 |
+
subfolder="transformer",
|
| 77 |
+
token=token,
|
| 78 |
+
trust_remote_code=True,
|
| 79 |
+
torch_dtype=dtype,
|
| 80 |
+
low_cpu_mem_usage=True,
|
| 81 |
+
# device_map="balanced_low_0",
|
| 82 |
+
offload_folder=offload_dir,
|
| 83 |
+
offload_state_dict=True,
|
| 84 |
+
# max_memory=max_memory,
|
| 85 |
)
|
| 86 |
+
weight_dtype = transformer.dtype
|
| 87 |
+
_log(f"[worker] transformer loaded, dtype={weight_dtype}")
|
| 88 |
+
|
| 89 |
+
_log("[worker] building slider projector…")
|
| 90 |
+
slider_projector = SliderProjector(out_dim=6144, pe_dim=2, n_layers=4, is_clip_input=True)
|
| 91 |
+
slider_projector.eval()
|
| 92 |
+
_log("[worker] loading projector weights…")
|
| 93 |
+
state_dict = torch.load(projector_path, map_location="cpu", weights_only=True)
|
| 94 |
+
slider_projector.load_state_dict(state_dict, strict=True)
|
| 95 |
+
|
| 96 |
+
_log("[worker] assembling pipeline (sharded/offloaded)…")
|
| 97 |
+
pipe = FluxKontextSliderPipeline.from_pretrained(
|
| 98 |
+
pretrained,
|
| 99 |
+
token=token,
|
| 100 |
+
trust_remote_code=True,
|
| 101 |
+
transformer=transformer,
|
| 102 |
+
slider_projector=slider_projector,
|
| 103 |
+
torch_dtype=weight_dtype,
|
| 104 |
+
low_cpu_mem_usage=True,
|
| 105 |
+
# device_map="balanced_low_0",
|
| 106 |
+
offload_folder=offload_dir,
|
| 107 |
+
offload_state_dict=True,
|
| 108 |
+
# max_memory=max_memory,
|
| 109 |
)
|
| 110 |
+
_log("[worker] pipeline assembled.")
|
| 111 |
|
| 112 |
+
_log(f"[worker] loading LoRA from: {trained_models_path}")
|
| 113 |
+
pipe.load_lora_weights(trained_models_path)
|
| 114 |
+
_log("[worker] LoRA loaded.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
# DO NOT pipe.to("cuda") here; keep auto device_map to avoid OOM
|
| 117 |
+
PIPELINE = pipe
|
| 118 |
+
if cuda_ok:
|
| 119 |
+
free, total = torch.cuda.mem_get_info()
|
| 120 |
+
_log(f"[worker] VRAM free/total: {free/1e9:.2f}/{total/1e9:.2f} GB")
|
| 121 |
+
_log("[worker] PIPELINE ready.")
|
| 122 |
+
return "ok"
|
| 123 |
|
| 124 |
+
except Exception:
|
| 125 |
+
_log("[worker] init exception:\n" + traceback.format_exc())
|
| 126 |
+
return "error"
|
|
|
|
| 127 |
|
| 128 |
|
| 129 |
# -----------------------------
|
|
|
|
| 311 |
img = img.resize((new_w, new_h), resample)
|
| 312 |
return img
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
# -----------------------------
|
| 315 |
# Inference functions
|
| 316 |
# -----------------------------
|
| 317 |
+
@spaces.GPU
|
| 318 |
@torch.no_grad()
|
| 319 |
+
def generate_image_stack_edits(text_prompt, n_edits, input_image):
|
| 320 |
"""
|
| 321 |
Compute n_edits images on a single GPU for slider values in (0,1],
|
| 322 |
return (list_of_images, first_image) so the UI shows immediately.
|
| 323 |
"""
|
| 324 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 325 |
+
|
| 326 |
+
# if pipeline is null will initialize it simply.
|
| 327 |
+
global PIPELINE
|
| 328 |
+
if PIPELINE is None:
|
| 329 |
+
status = load_pipeline_single_gpu()
|
| 330 |
+
|
| 331 |
+
print("loaded pipeline status: {}".format(status))
|
| 332 |
+
|
| 333 |
if not input_image or not text_prompt or text_prompt.startswith("Please select"):
|
| 334 |
return [], None
|
| 335 |
|
|
|
|
| 338 |
slider_values = [(i + 1) / float(n) for i in range(n)] # (0,1] inclusive
|
| 339 |
|
| 340 |
img = resize_image(input_image, 512)
|
| 341 |
+
pe, ppe, _ = PIPELINE.encode_prompt(prompt=text_prompt, prompt_2=text_prompt)
|
| 342 |
|
| 343 |
results: List[Image.Image] = []
|
| 344 |
gen_base = 64 # deterministic seed base
|
|
|
|
| 376 |
first = results[0] if results else None
|
| 377 |
return results, first
|
| 378 |
|
| 379 |
+
@spaces.GPU
|
| 380 |
+
def generate_single_image(text_prompt, slider_value, input_image):
|
| 381 |
if not input_image or not text_prompt or text_prompt.startswith("Please select"):
|
| 382 |
return None
|
| 383 |
|
| 384 |
img = resize_image(input_image, 512)
|
| 385 |
sv = float(slider_value)
|
| 386 |
pe, ppe = _encode_prompt(text_prompt)
|
| 387 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 388 |
|
| 389 |
gen = torch.Generator(device=DEVICE if DEVICE != "cpu" else "cpu").manual_seed(64)
|
| 390 |
with torch.no_grad():
|
|
|
|
| 519 |
|
| 520 |
return processed_image, generated_list, first_result, slider_update
|
| 521 |
|
| 522 |
+
|
| 523 |
+
@spaces.GPU
|
| 524 |
+
def gpu_warmup():
|
| 525 |
+
return load_pipeline_single_gpu()
|
| 526 |
+
|
| 527 |
with gr.Blocks() as demo:
|
| 528 |
+
# warming up the demo for the first run
|
| 529 |
+
demo.load(gpu_warmup)
|
| 530 |
gr.Markdown("# Kontinuous Kontext - Continuous Strength Control for Instruction-based Image Editing")
|
| 531 |
|
| 532 |
# Add description section
|