import os import torch import streamlit as st from PIL import Image from torchvision import transforms torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") model = torch.hub.load('pytorch/vision:v0.9.0', 'densenet121', pretrained=True) model.eval() # Download ImageNet labels os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Read the categories with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result # Streamlit app st.title("DenseNet Image Classification Demo") st.sidebar.title("Upload Image") # File upload uploaded_file = st.sidebar.file_uploader("Choose an image...", type="jpg") if uploaded_file is not None: # Display the uploaded image st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True) # Inference result = inference(Image.open(uploaded_file)) # Display results st.subheader("Top Predictions:") for category, confidence in result.items(): st.write(f"{category}: {confidence:.2%}")