import os import asyncio import json import hashlib import shutil from io import BytesIO from typing import List, Tuple import gradio as gr import numpy as np import faiss import requests from sentence_transformers import SentenceTransformer import fitz # PyMuPDF # ---------------- Config ---------------- OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY") OPENROUTER_MODEL = "nvidia/nemotron-nano-12b-v2-vl:free" EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2" CACHE_DIR = "./cache" SYSTEM_PROMPT = "You are a helpful assistant." os.makedirs(CACHE_DIR, exist_ok=True) embedder = SentenceTransformer(EMBEDDING_MODEL_NAME) DOCS: List[str] = [] FILENAMES: List[str] = [] EMBEDDINGS: np.ndarray = None FAISS_INDEX = None CURRENT_CACHE_KEY: str = "" # ---------------- Periodic cache cleanup ---------------- async def clear_cache_every_5min(): while True: await asyncio.sleep(300) try: if os.path.exists(CACHE_DIR): shutil.rmtree(CACHE_DIR) os.makedirs(CACHE_DIR, exist_ok=True) print("๐Ÿงน Cache cleared.") except Exception as e: print(f"[Cache cleanup error] {e}") asyncio.get_event_loop().create_task(clear_cache_every_5min()) # ---------------- PDF extraction ---------------- def extract_text_from_pdf(file_bytes: bytes) -> str: try: doc = fitz.open(stream=file_bytes, filetype="pdf") return "\n".join(page.get_text() for page in doc) except Exception as e: return f"[PDF extraction error] {e}" # ---------------- Cache + FAISS helpers ---------------- def make_cache_key(files: List[Tuple[str, bytes]]) -> str: h = hashlib.sha256() for name, b in sorted(files, key=lambda x: x[0]): h.update(name.encode()) h.update(str(len(b)).encode()) h.update(hashlib.sha256(b).digest()) return h.hexdigest() def cache_save(cache_key: str, embeddings: np.ndarray, filenames: List[str]): np.savez_compressed(os.path.join(CACHE_DIR, f"{cache_key}.npz"), embeddings=embeddings, filenames=np.array(filenames)) def cache_load(cache_key: str): path = os.path.join(CACHE_DIR, f"{cache_key}.npz") if not os.path.exists(path): return None try: data = np.load(path, allow_pickle=True) return data["embeddings"], data["filenames"].tolist() except: return None def build_faiss(emb: np.ndarray): global FAISS_INDEX if emb is None or len(emb) == 0: FAISS_INDEX = None return None emb = emb.astype("float32") index = faiss.IndexFlatL2(emb.shape[1]) index.add(emb) FAISS_INDEX = index return index def search(query: str, k: int = 3): if FAISS_INDEX is None: return [] q_emb = embedder.encode([query], convert_to_numpy=True).astype("float32") D, I = FAISS_INDEX.search(q_emb, k) return [ {"index": int(i), "distance": float(d), "text": DOCS[i], "source": FILENAMES[i]} for d, i in zip(D[0], I[0]) if i >= 0 ] # ---------------- OpenRouter API ---------------- def call_openrouter(prompt: str): if not OPENROUTER_API_KEY: return "[OpenRouter error] Missing OPENROUTER_API_KEY." url = "https://openrouter.ai/api/v1/chat/completions" headers = { "Authorization": f"Bearer {OPENROUTER_API_KEY}", "Content-Type": "application/json", } payload = { "model": OPENROUTER_MODEL, "messages": [ {"role": "system", "content": SYSTEM_PROMPT + " Always respond in plain text. Avoid markdown."}, {"role": "user", "content": prompt}, ], } try: r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() obj = r.json() if "choices" in obj and obj["choices"]: text = obj["choices"][0]["message"]["content"] return text.strip().replace("```", "") return "[Unexpected OpenRouter response]" except Exception as e: return f"[OpenRouter request error] {e}" # ---------- Helper to read bytes from various Gradio file shapes ---------- def read_file_bytes(f) -> Tuple[str, bytes]: """ Accepts the variety of file objects Gradio may pass: - file-like objects with .name and .read() - objects with .name and .value (NamedString) - tuples like (name, bytes) - dicts that may contain 'name' and 'data' or temporary path keys - string filesystem paths Returns (filename, bytes) Raises ValueError for unsupported shapes. """ # tuple (name, bytes) if isinstance(f, tuple) and len(f) == 2 and isinstance(f[1], (bytes, bytearray)): return f[0], bytes(f[1]) # dict-like (from some frontends) if isinstance(f, dict): name = f.get("name") or f.get("filename") or "uploaded" # raw bytes/content data = f.get("data") or f.get("content") or f.get("value") or f.get("file") if isinstance(data, (bytes, bytearray)): return name, bytes(data) if isinstance(data, str): # data could be text content try: return name, data.encode("utf-8") except Exception: pass # maybe a temp file path tmp_path = f.get("tmp_path") or f.get("path") or f.get("file") if tmp_path and isinstance(tmp_path, str) and os.path.exists(tmp_path): with open(tmp_path, "rb") as fh: return os.path.basename(tmp_path), fh.read() # file-like object with read() if hasattr(f, "name") and hasattr(f, "read"): try: name = os.path.basename(f.name) if getattr(f, "name", None) else "uploaded" return name, f.read() except Exception: pass # NamedString-like: has .name and .value if hasattr(f, "name") and hasattr(f, "value"): name = os.path.basename(getattr(f, "name") or "uploaded") v = getattr(f, "value") if isinstance(v, (bytes, bytearray)): return name, bytes(v) if isinstance(v, str): return name, v.encode("utf-8") # string path if isinstance(f, str) and os.path.exists(f): with open(f, "rb") as fh: return os.path.basename(f), fh.read() raise ValueError(f"Unsupported file object type: {type(f)}") # ---------------- PDF Upload & Index (fixed) ---------------- def upload_and_index(files): global DOCS, FILENAMES, EMBEDDINGS, CURRENT_CACHE_KEY if not files: return "No PDF uploaded.", "" processed = [] # files may be a single object or a list; normalize if not isinstance(files, (list, tuple)): files = [files] try: for f in files: name, b = read_file_bytes(f) processed.append((name, b)) except ValueError as e: # return a clear message to the UI so user can debug what Gradio passed return f"Upload error: {e}", "" # preview for UI preview = [{"name": n, "size": len(b)} for n, b in processed] # cache key cache_key = make_cache_key(processed) CURRENT_CACHE_KEY = cache_key cached = cache_load(cache_key) if cached: EMBEDDINGS, FILENAMES = cached EMBEDDINGS = np.array(EMBEDDINGS) DOCS = [extract_text_from_pdf(b) for _, b in processed] build_faiss(EMBEDDINGS) return f"Loaded cached embeddings ({len(FILENAMES)} PDFs).", json.dumps(preview) # extract text and index DOCS = [extract_text_from_pdf(b) for _, b in processed] FILENAMES = [n for n, _ in processed] EMBEDDINGS = embedder.encode(DOCS, convert_to_numpy=True).astype("float32") cache_save(cache_key, EMBEDDINGS, FILENAMES) build_faiss(EMBEDDINGS) return f"Uploaded + indexed {len(DOCS)} PDFs.", json.dumps(preview) # ---------------- Question Answering ---------------- def ask(question: str): if not question: return "Please enter a question." if not DOCS: return "No PDFs indexed." results = search(question) if not results: return "No relevant text found." context = "\n".join( f"Source: {r['source']}\n\n{r['text'][:15000]}\n---\n" for r in results ) prompt = f"Use this context to answer briefly:\n\n{context}\nQuestion: {question}\nAnswer:" return call_openrouter(prompt) # ---------------- Gradio UI ---------------- with gr.Blocks(title="PDF RAG Bot") as demo: gr.Markdown("# ๐Ÿ“„ PDF-Only RAG Bot\nUpload PDFs โ†’ Ask Questions โ†’ AI Answers from PDF content.") file_input = gr.File(label="Upload PDF files", file_count="multiple", file_types=[".pdf"]) upload_btn = gr.Button("Upload & Index") status = gr.Textbox(label="Status", interactive=False) preview = gr.Textbox(label="Upload preview (JSON)", interactive=False) upload_btn.click(upload_and_index, inputs=[file_input], outputs=[status, preview]) gr.Markdown("### Ask a Question") q = gr.Textbox(label="Your question", lines=3) ask_btn = gr.Button("Ask PDF Bot") answer = gr.Textbox(label="Answer", lines=15) ask_btn.click(ask, inputs=[q], outputs=[answer]) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)