Spaces:
Runtime error
Runtime error
File size: 27,934 Bytes
ac96ee7 9d3319a a3ccc7e 706ca1e ac96ee7 f9600ca ac96ee7 f9600ca ac96ee7 f9600ca ac96ee7 3507ce7 ac96ee7 f9600ca 9d3319a f9600ca 9d3319a ac96ee7 dd41807 9d3319a f9600ca 9d3319a 3507ce7 dd41807 3507ce7 dd41807 3507ce7 9d3319a 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e b9a9520 706ca1e b9a9520 706ca1e b9a9520 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e a3ccc7e 706ca1e b9a9520 706ca1e b9a9520 706ca1e b9a9520 ac96ee7 f9600ca b9a9520 ac96ee7 b9a9520 9d3319a ac96ee7 9d3319a ac96ee7 9d3319a ac96ee7 b9a9520 9d3319a b9a9520 9d3319a b9a9520 9d3319a ac96ee7 9d3319a dd41807 9d3319a b9a9520 9d3319a b9a9520 9d3319a b9a9520 9d3319a b9a9520 ac96ee7 f9600ca b9a9520 9d3319a b9a9520 ac96ee7 b9a9520 9d3319a ac96ee7 f9600ca ac96ee7 f9600ca 706ca1e ac96ee7 f9600ca 706ca1e ac96ee7 706ca1e ac96ee7 706ca1e b9a9520 706ca1e 3a7a998 706ca1e ac96ee7 706ca1e 3a7a998 706ca1e 3a7a998 ac96ee7 706ca1e 3d89603 706ca1e ac96ee7 706ca1e ac96ee7 706ca1e 3a7a998 706ca1e 3a7a998 706ca1e 3a7a998 706ca1e ac96ee7 f9600ca 706ca1e f9600ca ac96ee7 f9600ca 706ca1e ac96ee7 706ca1e 3d89603 ac96ee7 3d89603 ac96ee7 706ca1e ac96ee7 3d89603 ac96ee7 706ca1e ac96ee7 b9a9520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
import gradio as gr
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import spaces
import numpy as np
from pydub import AudioSegment
import tempfile
import os
import subprocess
import re
# Model configuration - Using CrisperWhisper for TRUE verbatim transcription
# CrisperWhisper is designed to transcribe EVERY word including um, uh, fillers, stutters, false starts
MODEL_NAME = "nyrahealth/CrisperWhisper"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print(f"Loading {MODEL_NAME} for verbatim transcription...")
# Load model and processor
model = AutoModelForSpeechSeq2Seq.from_pretrained(
MODEL_NAME,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(MODEL_NAME)
# Create pipeline optimized for verbatim output
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=8, # Reduced batch size for stability
torch_dtype=torch_dtype,
device=device,
)
print("Model loaded successfully!")
def get_audio_duration(audio_path):
"""Get duration of audio file in seconds."""
try:
audio = AudioSegment.from_file(audio_path)
return len(audio) / 1000.0
except:
return None
def slice_audio(audio_path, chunk_duration=300):
"""
Slice audio into chunks of specified duration (in seconds).
Default is 5 minutes (300 seconds) per chunk.
"""
audio = AudioSegment.from_file(audio_path)
duration_ms = len(audio)
chunk_duration_ms = chunk_duration * 1000
chunks = []
for i in range(0, duration_ms, chunk_duration_ms):
chunk = audio[i:i + chunk_duration_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
chunk.export(temp_file.name, format="wav")
chunks.append(temp_file.name)
return chunks
@spaces.GPU
def transcribe_audio_chunk(audio_input, task="transcribe", language=None, return_timestamps=False):
"""
Transcribe a single audio chunk with CrisperWhisper.
This model is specifically trained for verbatim transcription.
"""
try:
generate_kwargs = {
"task": task,
}
if language:
generate_kwargs["language"] = language
# Only add timestamps if requested and handle the potential error
if return_timestamps:
try:
generate_kwargs["return_timestamps"] = "word"
result = pipe(audio_input, generate_kwargs=generate_kwargs)
return result
except RuntimeError as e:
if "size of tensor" in str(e):
# Fallback to chunk-level timestamps if word-level fails
print("Word-level timestamps failed, trying chunk-level...")
generate_kwargs["return_timestamps"] = True
result = pipe(audio_input, generate_kwargs=generate_kwargs)
return result
raise
else:
# No timestamps requested
result = pipe(audio_input, generate_kwargs=generate_kwargs)
return result
except Exception as e:
# Last resort fallback: try with minimal parameters
print(f"Error with generate_kwargs: {e}")
try:
result = pipe(audio_input)
return result
except Exception as e2:
raise Exception(f"Transcription failed: {str(e2)}")
def create_srt_file(transcription_data, output_path):
"""
Create an SRT subtitle file from transcription data.
"""
with open(output_path, 'w', encoding='utf-8') as f:
counter = 1
for item in transcription_data:
start_time = item['start']
end_time = item['end']
text = item['text'].strip()
if text: # Only add non-empty subtitles
# Convert seconds to SRT time format (HH:MM:SS,mmm)
start_srt = format_timestamp_srt(start_time)
end_srt = format_timestamp_srt(end_time)
f.write(f"{counter}\n")
f.write(f"{start_srt} --> {end_srt}\n")
f.write(f"{text}\n\n")
counter += 1
def format_timestamp_srt(seconds):
"""Convert seconds to SRT timestamp format."""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millis = int((seconds % 1) * 1000)
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
def extract_audio_from_video(video_path):
"""Extract audio from video file using ffmpeg."""
try:
audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
# Use ffmpeg directly for more reliable extraction
cmd = [
'ffmpeg',
'-i', video_path,
'-vn', # No video
'-acodec', 'pcm_s16le',
'-ar', '16000', # 16kHz sample rate for Whisper
'-ac', '1', # Mono
'-y', # Overwrite output
audio_path
]
subprocess.run(cmd, check=True, capture_output=True)
return audio_path
except Exception as e:
raise Exception(f"Failed to extract audio: {str(e)}")
def burn_subtitles_to_video(video_path, srt_path, progress=gr.Progress()):
"""
Burn subtitles into video using ffmpeg.
"""
try:
progress(0.7, desc="Creating video with subtitles...")
output_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
# Escape the SRT path for ffmpeg filter
srt_escaped = srt_path.replace('\\', '\\\\').replace(':', '\\:')
# Use ffmpeg to burn subtitles
cmd = [
'ffmpeg',
'-i', video_path,
'-vf', f"subtitles={srt_escaped}:force_style='FontName=Arial,FontSize=24,PrimaryColour=&HFFFFFF,OutlineColour=&H000000,Outline=2,Alignment=2,MarginV=50'",
'-c:a', 'copy',
'-y',
output_path
]
subprocess.run(cmd, check=True, capture_output=True)
progress(1.0, desc="Done!")
return output_path
except Exception as e:
raise Exception(f"Failed to create subtitled video: {str(e)}")
def merge_subtitle_segments(segments, max_duration=5.0, max_words=15):
"""
Merge small subtitle segments into larger, more readable ones.
"""
if not segments:
return []
merged = []
# Start with the first segment
current_segment = segments[0].copy()
for i in range(1, len(segments)):
next_segment = segments[i]
# Combine text and calculate new word count
new_text = current_segment['text'] + " " + next_segment['text'].lstrip()
new_word_count = len(new_text.split())
# Calculate new duration
new_duration = next_segment['end'] - current_segment['start']
# If merging doesn't exceed limits, merge
if new_duration <= max_duration and new_word_count <= max_words:
current_segment['end'] = next_segment['end']
current_segment['text'] = new_text
else:
# Otherwise, save the current segment and start a new one
merged.append(current_segment)
current_segment = next_segment.copy()
# Don't forget the last segment
merged.append(current_segment)
return merged
@spaces.GPU
def process_video(video_path, task="transcribe", language=None, subtitle_format="burned", progress=gr.Progress()):
"""
Process video: extract audio, transcribe, and add subtitles.
"""
if video_path is None:
return None, "Please provide a video file.", None
temp_files = []
srt_path = None # Initialize to prevent NameError in finally block
try:
# Extract audio from video
progress(0, desc="Extracting audio from video...")
audio_path = extract_audio_from_video(video_path)
temp_files.append(audio_path)
# Check audio duration
duration = get_audio_duration(audio_path)
chunk_duration = 300 # 5 minutes per chunk
if duration and duration > chunk_duration:
progress(0.1, desc=f"Audio is {duration:.1f}s long. Slicing into chunks...")
audio_chunks = slice_audio(audio_path, chunk_duration)
temp_files.extend(audio_chunks)
else:
audio_chunks = [audio_path]
# Transcribe each chunk with timestamps
all_transcriptions = []
total_chunks = len(audio_chunks)
for idx, chunk_path in enumerate(audio_chunks):
progress(0.1 + (idx / total_chunks) * 0.5, desc=f"Transcribing chunk {idx + 1}/{total_chunks}...")
result = transcribe_audio_chunk(chunk_path, task, language, return_timestamps=True)
if "chunks" in result:
chunk_offset = idx * chunk_duration
for word_chunk in result["chunks"]:
start = word_chunk["timestamp"][0]
end = word_chunk["timestamp"][1]
if start is not None and end is not None:
all_transcriptions.append({
"start": start + chunk_offset,
"end": end + chunk_offset,
"text": word_chunk["text"]
})
if not all_transcriptions:
return None, "No transcription data available. Timestamps may have failed.", None
# Merge close timestamps for better subtitle readability
progress(0.6, desc="Optimizing subtitle timing...")
merged_transcriptions = merge_subtitle_segments(all_transcriptions, max_duration=5.0, max_words=15)
# Generate full text transcript
full_text = "".join([t["text"] for t in merged_transcriptions]).strip()
transcript_output = f"**Verbatim Transcription:**\n{full_text}\n\n"
transcript_output += f"*Total duration: {duration:.1f}s | {len(merged_transcriptions)} subtitle segments*"
# Create SRT file (needed for all formats)
srt_path = tempfile.NamedTemporaryFile(suffix=".srt", delete=False).name
create_srt_file(merged_transcriptions, srt_path)
temp_files.append(srt_path)
if subtitle_format == "burned":
# Burn subtitles into video
output_video = burn_subtitles_to_video(video_path, srt_path, progress)
return output_video, transcript_output, None
elif subtitle_format == "srt":
# Return SRT file only
progress(0.7, desc="Creating SRT subtitle file...")
return None, transcript_output, srt_path
else: # both
progress(0.7, desc="Creating video with subtitles and SRT file...")
output_video = burn_subtitles_to_video(video_path, srt_path, progress)
# Create a copy of SRT for download
srt_download = tempfile.NamedTemporaryFile(suffix=".srt", delete=False).name
import shutil
shutil.copy(srt_path, srt_download)
return output_video, transcript_output, srt_download
except Exception as e:
return None, f"Error processing video: {str(e)}", None
finally:
# Clean up temporary audio files (keep video and srt outputs)
for temp_file in temp_files:
try:
# srt_path could be None if an error occurs early
if srt_path and os.path.exists(temp_file) and temp_file != srt_path:
os.unlink(temp_file)
elif os.path.exists(temp_file):
os.unlink(temp_file)
except:
pass
def transcribe_audio(audio, task="transcribe", return_timestamps=False, language=None, export_srt=False, progress=gr.Progress()):
"""
Transcribe audio with VERY VERBATIM output using CrisperWhisper.
This model transcribes every spoken word exactly as it is, including fillers, stutters, and false starts.
"""
if audio is None:
return "Please provide an audio file or recording.", None
# If SRT export is requested, we must generate timestamps.
if export_srt:
return_timestamps = True
temp_files = []
try:
# Handle different audio input formats
if isinstance(audio, str):
audio_path = audio
elif isinstance(audio, tuple):
sr, audio_data = audio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
import scipy.io.wavfile
scipy.io.wavfile.write(temp_file.name, sr, audio_data)
audio_path = temp_file.name
temp_files.append(audio_path)
else:
return "Unsupported audio format.", None
# Check audio duration and slice if necessary
duration = get_audio_duration(audio_path)
chunk_duration = 300 # 5 minutes per chunk
if duration and duration > chunk_duration:
progress(0, desc=f"Audio is {duration:.1f}s long. Slicing into chunks...")
audio_chunks = slice_audio(audio_path, chunk_duration)
temp_files.extend(audio_chunks)
else:
audio_chunks = [audio_path]
# Process each chunk
all_word_chunks = []
full_text_parts = []
total_chunks = len(audio_chunks)
for idx, chunk_path in enumerate(audio_chunks):
progress((idx + 1) / total_chunks, desc=f"Transcribing chunk {idx + 1}/{total_chunks}...")
result = transcribe_audio_chunk(chunk_path, task, language, return_timestamps)
full_text_parts.append(result["text"])
if return_timestamps and "chunks" in result:
chunk_offset = idx * chunk_duration
for word_chunk in result["chunks"]:
start = word_chunk["timestamp"][0]
end = word_chunk["timestamp"][1]
if start is not None and end is not None:
all_word_chunks.append({
"start": start + chunk_offset,
"end": end + chunk_offset,
"text": word_chunk["text"]
})
# Combine all transcriptions
full_text = "".join(full_text_parts).strip()
output = f"**Verbatim Transcription:**\n{full_text}\n"
srt_file_path = None
if return_timestamps and all_word_chunks:
# If timestamps are requested but not for SRT, display them in the textbox
if not export_srt:
output += "\n**Word-level Timestamps:**\n"
for ts in all_word_chunks:
output += f"[{ts['start']:.2f}s - {ts['end']:.2f}s]{ts['text']}\n"
# Generate SRT file if requested
if export_srt:
if all_word_chunks:
merged_transcriptions = merge_subtitle_segments(all_word_chunks, max_duration=5.0, max_words=15)
srt_file = tempfile.NamedTemporaryFile(suffix=".srt", delete=False).name
create_srt_file(merged_transcriptions, srt_file)
srt_file_path = srt_file
else:
output += "\n**Warning:** Could not generate SRT file as word-level timestamps were not available."
if duration:
output += f"\n*Total duration: {duration:.1f}s | Processed in {total_chunks} chunk(s)*"
return output, srt_file_path
except Exception as e:
return f"Error during transcription: {str(e)}", None
finally:
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except:
pass
# Language options for manual selection
LANGUAGES = {
"Auto-detect": None,
"English": "en",
"Spanish": "es",
"French": "fr",
"German": "de",
"Italian": "it",
"Portuguese": "pt",
"Dutch": "nl",
"Russian": "ru",
"Chinese": "zh",
"Japanese": "ja",
"Korean": "ko",
"Arabic": "ar",
"Hindi": "hi",
"Turkish": "tr",
"Polish": "pl",
"Ukrainian": "uk",
"Vietnamese": "vi",
"Thai": "th",
"Indonesian": "id",
"Czech": "cs",
"Romanian": "ro",
"Swedish": "sv",
"Danish": "da",
"Norwegian": "no",
"Finnish": "fi",
"Greek": "el",
"Hebrew": "he",
}
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# ποΈ Very Verbatim Multilingual Speech-to-Text
Powered by **CrisperWhisper** - specifically designed for verbatim transcription with ZeroGPU acceleration.
## π₯ TRUE Verbatim Transcription
Unlike standard Whisper (which omits disfluencies), **CrisperWhisper captures EVERYTHING**:
- β
**Fillers**: um, uh, ah, er, mm, like, you know
- β
**Hesitations**: pauses, breath sounds, stutters
- β
**False Starts**: "I was- I went to the store"
- β
**Repetitions**: "I I I think that..."
- β
**Disfluencies**: Every non-fluent speech element
- β
**Accurate Word-Level Timestamps**: Precise timing even around disfluencies
- β
**Multilingual**: Supports 99+ languages
- β
**Long Audio Support**: Automatic 5-minute chunking
- β
**Video Subtitles**: Automatic caption generation with burned-in or SRT output
**Perfect for:** Legal transcription, linguistic research, therapy sessions, interviews,
conversational AI training, video subtitling, or any use case requiring exact speech capture.
"""
)
with gr.Tabs():
# Audio Tab
with gr.Tab("π€ Audio Transcription"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio Input"
)
with gr.Row():
task_radio = gr.Radio(
choices=["transcribe", "translate"],
value="transcribe",
label="Task",
info="Transcribe verbatim or translate to English"
)
language_dropdown = gr.Dropdown(
choices=list(LANGUAGES.keys()),
value="Auto-detect",
label="Language",
info="Select language or use auto-detect"
)
timestamps_checkbox = gr.Checkbox(
label="Show word-level timestamps in text output",
value=False,
info="Display precise timing for each word"
)
export_srt_checkbox = gr.Checkbox(
label="Export as SRT file",
value=False,
info="Generate downloadable SRT subtitle file"
)
transcribe_btn = gr.Button("π― Transcribe Verbatim", variant="primary", size="lg")
with gr.Column():
output_text = gr.Textbox(
label="Verbatim Transcription (includes all um, uh, hesitations)",
lines=18,
show_copy_button=True,
placeholder="Your VERY verbatim transcription will appear here...\n\nEvery um, uh, stutter, and hesitation will be captured!"
)
output_audio_srt = gr.File(
label="Download SRT Subtitles",
interactive=False,
visible=False
)
gr.Markdown(
"""
### Why CrisperWhisper for Verbatim?
**Standard Whisper** is trained to transcribe the "intended meaning" - it automatically cleans up:
- β Removes "um", "uh", "ah"
- β Omits false starts
- β Skips repetitions
- β Ignores stutters
**CrisperWhisper** is specifically trained for verbatim transcription:
- β
Keeps every filler word
- β
Preserves all disfluencies
- β
Captures exact speech patterns
- β
Accurate timestamps around hesitations
- β
Export as SRT file for use in video editors, YouTube, etc.
"""
)
# Video Tab
with gr.Tab("π¬ Video Subtitles"):
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Video Input",
sources=["upload"]
)
with gr.Row():
video_task_radio = gr.Radio(
choices=["transcribe", "translate"],
value="transcribe",
label="Task",
info="Transcribe verbatim or translate to English"
)
video_language_dropdown = gr.Dropdown(
choices=list(LANGUAGES.keys()),
value="Auto-detect",
label="Language",
info="Select language or use auto-detect"
)
subtitle_format_radio = gr.Radio(
choices=[
("Burned-in subtitles (permanent)", "burned"),
("SRT file only (external subtitles)", "srt"),
("Both burned-in video + SRT file", "both")
],
value="burned",
label="Subtitle Format",
info="Choose output format"
)
process_video_btn = gr.Button("π¬ Generate Subtitles", variant="primary", size="lg")
with gr.Column():
output_video = gr.Video(
label="Video with Subtitles",
interactive=False
)
video_transcript = gr.Textbox(
label="Verbatim Transcript",
lines=10,
show_copy_button=True,
placeholder="Transcript will appear here..."
)
output_srt = gr.File(
label="Download SRT Subtitles",
interactive=False
)
gr.Markdown(
"""
### Video Subtitle Features
- **Burned-in Subtitles**: Permanently embedded in video (white text with black outline)
- **SRT File**: Standard subtitle file with timestamps (HH:MM:SS,mmm format)
- Compatible with YouTube, VLC, Premiere Pro, Final Cut, DaVinci Resolve
- Easy to edit timings and text in any text editor
- Can be translated and re-synced
- **Verbatim Captions**: All hesitations, fillers, and disfluencies included
- **Smart Timing**: Automatically merges short segments for readability
- **Long Video Support**: Handles videos of any length (automatic chunking)
### SRT File Format Example
```
1
00:00:01,500 --> 00:00:03,200
Um, so I was thinking that
2
00:00:03,200 --> 00:00:05,800
we could, uh, go to the store
```
### Tips
- Use "Burned-in" for sharing videos with guaranteed subtitle visibility
- Use "SRT file" for flexible editing, translation, and platform uploads
- Use "Both" to have maximum flexibility
- SRT files work with all major video platforms and editors
- Subtitles are positioned at the bottom center of the video
"""
)
gr.Markdown(
"""
### Use Cases
- **Legal/Court Transcription**: Exact wording required by law
- **Linguistic Research**: Study of natural speech patterns and disfluencies
- **Medical/Therapy Sessions**: Capturing patient speech patterns
- **Interview Transcription**: Preserving speaker mannerisms
- **Conversational AI Training**: Realistic dialogue data
- **Accessibility**: Complete transcripts and captions for deaf/hard-of-hearing
- **Video Content**: YouTube, social media, educational content with accurate captions
- **Language Learning**: Analyzing natural spoken language
### Tips for Best Results
- Clear audio with minimal background noise works best
- The model captures quiet speech - ensure consistent audio levels
- Manual language selection can improve accuracy
- Long files are automatically processed in 5-minute chunks
- For videos, ensure good audio quality for best subtitle accuracy
"""
)
# Set up event handlers
def transcribe_wrapper(audio, task, timestamps, export_srt, language_name, progress=gr.Progress()):
language_code = LANGUAGES[language_name]
transcript, srt_file = transcribe_audio(audio, task, timestamps, language_code, export_srt, progress)
# Control visibility of SRT download
srt_visible = gr.update(visible=srt_file is not None, value=srt_file)
return transcript, srt_visible
def video_wrapper(video, task, language_name, subtitle_format, progress=gr.Progress()):
language_code = LANGUAGES[language_name]
return process_video(video, task, language_code, subtitle_format, progress)
transcribe_btn.click(
fn=transcribe_wrapper,
inputs=[audio_input, task_radio, timestamps_checkbox, export_srt_checkbox, language_dropdown],
outputs=[output_text, output_audio_srt]
)
process_video_btn.click(
fn=video_wrapper,
inputs=[video_input, video_task_radio, video_language_dropdown, subtitle_format_radio],
outputs=[output_video, video_transcript, output_srt]
)
# Launch the app
if __name__ == "__main__":
demo.launch()
|