Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| from pathlib import Path | |
| from io import BytesIO | |
| from typing import Optional, Tuple, Dict, Any, Iterable | |
| import re | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| import requests | |
| import fitz | |
| import supervision as sv | |
| from transformers import ( | |
| Qwen3VLMoeForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| colors.orange_red = colors.Color( | |
| name="orange_red", | |
| c50="#FFF0E5", | |
| c100="#FFE0CC", | |
| c200="#FFC299", | |
| c300="#FFA366", | |
| c400="#FF8533", | |
| c500="#FF4500", | |
| c600="#E63E00", | |
| c700="#CC3700", | |
| c800="#B33000", | |
| c900="#992900", | |
| c950="#802200", | |
| ) | |
| class OrangeRedTheme(Soft): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.gray, | |
| secondary_hue: colors.Color | str = colors.orange_red, # Use the new color | |
| neutral_hue: colors.Color | str = colors.slate, | |
| text_size: sizes.Size | str = sizes.text_lg, | |
| font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
| ), | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| secondary_hue=secondary_hue, | |
| neutral_hue=neutral_hue, | |
| text_size=text_size, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| super().set( | |
| background_fill_primary="*primary_50", | |
| background_fill_primary_dark="*primary_900", | |
| body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
| body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
| button_primary_text_color="white", | |
| button_primary_text_color_hover="white", | |
| button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_secondary_text_color="black", | |
| button_secondary_text_color_hover="white", | |
| button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", | |
| button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", | |
| button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", | |
| button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", | |
| slider_color="*secondary_500", | |
| slider_color_dark="*secondary_600", | |
| block_title_text_weight="600", | |
| block_border_width="3px", | |
| block_shadow="*shadow_drop_lg", | |
| button_primary_shadow="*shadow_drop_lg", | |
| button_large_padding="11px", | |
| color_accent_soft="*primary_100", | |
| block_label_background_fill="*primary_200", | |
| ) | |
| orange_red_theme = OrangeRedTheme() | |
| css = """ | |
| #main-title h1 { | |
| font-size: 2.3em !important; | |
| } | |
| #output-title h2 { | |
| font-size: 2.1em !important; | |
| } | |
| :root { | |
| --color-grey-50: #f9fafb; | |
| --banner-background: var(--secondary-400); | |
| --banner-text-color: var(--primary-100); | |
| --banner-background-dark: var(--secondary-800); | |
| --banner-text-color-dark: var(--primary-100); | |
| --banner-chrome-height: calc(16px + 43px); | |
| --chat-chrome-height-wide-no-banner: 320px; | |
| --chat-chrome-height-narrow-no-banner: 450px; | |
| --chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height)); | |
| --chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height)); | |
| } | |
| .banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; } | |
| .banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; } | |
| body.dark .banner-message { background-color: var(--banner-background-dark) !important; } | |
| body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; } | |
| .toast-body { background-color: var(--color-grey-50); } | |
| .html-container:has(.css-styles) { padding: 0; margin: 0; } | |
| .css-styles { height: 0; } | |
| .model-message { text-align: end; } | |
| .model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; } | |
| .user-input-container .multimodal-textbox{ border: none !important; } | |
| .control-button { height: 51px; } | |
| button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); } | |
| button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); } | |
| .opt-out-message { top: 8px; } | |
| .opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; } | |
| div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; } | |
| div.no-padding { padding: 0 !important; } | |
| @media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } } | |
| @media (max-width: 1024px) { | |
| .responsive-row { flex-direction: column; } | |
| .model-message { text-align: start; font-size: 10px !important; } | |
| .model-dropdown-container { flex-direction: column; align-items: flex-start; } | |
| div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; } | |
| } | |
| @media (max-width: 400px) { | |
| .responsive-row { flex-direction: column; } | |
| .model-message { text-align: start; font-size: 10px !important; } | |
| .model-dropdown-container { flex-direction: column; align-items: flex-start; } | |
| div.block.chatbot { max-height: 360px !important; } | |
| } | |
| @media (max-height: 932px) { .chatbot { max-height: 500px !important; } } | |
| @media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } } | |
| """ | |
| MAX_MAX_NEW_TOKENS = 4096 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| MODEL_ID_Q3VL = "Qwen/Qwen3-VL-30B-A3B-Instruct" | |
| processor_q3vl = AutoProcessor.from_pretrained(MODEL_ID_Q3VL, trust_remote_code=True, use_fast=False) | |
| model_q3vl = Qwen3VLMoeForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Q3VL, | |
| trust_remote_code=True, | |
| dtype=torch.float16 | |
| ).to(device).eval() | |
| def extract_gif_frames(gif_path: str): | |
| if not gif_path: | |
| return [] | |
| with Image.open(gif_path) as gif: | |
| total_frames = gif.n_frames | |
| frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int) | |
| frames = [] | |
| for i in frame_indices: | |
| gif.seek(i) | |
| frames.append(gif.convert("RGB").copy()) | |
| return frames | |
| def downsample_video(video_path): | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| frames.append(pil_image) | |
| vidcap.release() | |
| return frames | |
| def convert_pdf_to_images(file_path: str, dpi: int = 200): | |
| if not file_path: | |
| return [] | |
| images = [] | |
| pdf_document = fitz.open(file_path) | |
| zoom = dpi / 72.0 | |
| mat = fitz.Matrix(zoom, zoom) | |
| for page_num in range(len(pdf_document)): | |
| page = pdf_document.load_page(page_num) | |
| pix = page.get_pixmap(matrix=mat) | |
| img_data = pix.tobytes("png") | |
| images.append(Image.open(BytesIO(img_data))) | |
| pdf_document.close() | |
| return images | |
| def get_initial_pdf_state() -> Dict[str, Any]: | |
| return {"pages": [], "total_pages": 0, "current_page_index": 0} | |
| def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]: | |
| state = get_initial_pdf_state() | |
| if not file_path: | |
| return None, state, '<div style="text-align:center;">No file loaded</div>' | |
| try: | |
| pages = convert_pdf_to_images(file_path) | |
| if not pages: | |
| return None, state, '<div style="text-align:center;">Could not load file</div>' | |
| state["pages"] = pages | |
| state["total_pages"] = len(pages) | |
| page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>' | |
| return pages[0], state, page_info_html | |
| except Exception as e: | |
| return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>' | |
| def navigate_pdf_page(direction: str, state: Dict[str, Any]): | |
| if not state or not state["pages"]: | |
| return None, state, '<div style="text-align:center;">No file loaded</div>' | |
| current_index = state["current_page_index"] | |
| total_pages = state["total_pages"] | |
| if direction == "prev": | |
| new_index = max(0, current_index - 1) | |
| elif direction == "next": | |
| new_index = min(total_pages - 1, current_index + 1) | |
| else: | |
| new_index = current_index | |
| state["current_page_index"] = new_index | |
| image_preview = state["pages"][new_index] | |
| page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>' | |
| return image_preview, state, page_info_html | |
| def draw_boxes_on_image(image: Image.Image, text_output: str, object_name: str) -> Tuple[Image.Image, str]: | |
| try: | |
| # Extract the JSON part of the text output | |
| match = re.search(r'\[\s*\[.*?\]\s*\]', text_output, re.DOTALL) | |
| if not match: | |
| return image, f"Could not find coordinates in the model output: {text_output}" | |
| boxes_str = match.group(0) | |
| boxes = json.loads(boxes_str) | |
| if not boxes or not isinstance(boxes[0], list): | |
| return image, f"No valid boxes found in parsed data: {boxes}" | |
| width, height = image.size | |
| np_image = np.array(image.convert("RGB")) | |
| # Denormalize coordinates | |
| xyxy = [] | |
| for box in boxes: | |
| x1, y1, x2, y2 = box | |
| xyxy.append([x1 * width, y1 * height, x2 * width, y2 * height]) | |
| detections = sv.Detections(xyxy=np.array(xyxy)) | |
| bounding_box_annotator = sv.BoxAnnotator(thickness=2) | |
| label_annotator = sv.LabelAnnotator(text_thickness=1, text_scale=0.5) | |
| labels = [f"{object_name} #{i+1}" for i in range(len(detections))] | |
| annotated_image = bounding_box_annotator.annotate(scene=np_image.copy(), detections=detections) | |
| annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections, labels=labels) | |
| return Image.fromarray(annotated_image), text_output | |
| except (json.JSONDecodeError, IndexError, TypeError) as e: | |
| return image, f"Failed to parse or draw boxes. Error: {e}\nModel Output:\n{text_output}" | |
| def draw_points_on_image(image: Image.Image, text_output: str) -> Tuple[Image.Image, str]: | |
| try: | |
| match = re.search(r'\[\s*\[.*?\]\s*\]', text_output, re.DOTALL) | |
| if not match: | |
| return image, f"Could not find coordinates in the model output: {text_output}" | |
| points_str = match.group(0) | |
| points = json.loads(points_str) | |
| if not points or not isinstance(points[0], list): | |
| return image, f"No valid points found in parsed data: {points}" | |
| width, height = image.size | |
| np_image = np.array(image.convert("RGB")) | |
| # Denormalize coordinates | |
| xy = [] | |
| for point in points: | |
| x, y = point | |
| xy.append([x * width, y * height]) | |
| points_array = np.array(xy).reshape(1, -1, 2) | |
| key_points = sv.KeyPoints(xy=points_array) | |
| point_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.RED) | |
| annotated_image = point_annotator.annotate(scene=np_image.copy(), key_points=key_points) | |
| return Image.fromarray(annotated_image), text_output | |
| except (json.JSONDecodeError, IndexError, TypeError) as e: | |
| return image, f"Failed to parse or draw points. Error: {e}\nModel Output:\n{text_output}" | |
| def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] | |
| prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_video(text: str, video_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if video_path is None: | |
| yield "Please upload a video.", "Please upload a video." | |
| return | |
| frames = downsample_video(video_path) | |
| if not frames: | |
| yield "Could not process video.", "Could not process video." | |
| return | |
| messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] | |
| for frame in frames: | |
| messages[0]["content"].insert(0, {"type": "image"}) | |
| prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty} | |
| thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_pdf(text: str, state: Dict[str, Any], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if not state or not state["pages"]: | |
| yield "Please upload a PDF file first.", "Please upload a PDF file first." | |
| return | |
| page_images = state["pages"] | |
| full_response = "" | |
| for i, image in enumerate(page_images): | |
| page_header = f"--- Page {i+1}/{len(page_images)} ---\n" | |
| yield full_response + page_header, full_response + page_header | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] | |
| prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| page_buffer = "" | |
| for new_text in streamer: | |
| page_buffer += new_text | |
| yield full_response + page_header + page_buffer, full_response + page_header + page_buffer | |
| time.sleep(0.01) | |
| full_response += page_header + page_buffer + "\n\n" | |
| def generate_caption(image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if image is None: | |
| yield "Please upload an image to caption.", "Please upload an image to caption." | |
| return | |
| system_prompt = ( | |
| "You are an AI assistant that rigorously follows this response protocol: For every input image, your primary " | |
| "task is to write a precise caption that captures the essence of the image in clear, concise, and contextually " | |
| "accurate language. Along with the caption, provide a structured set of attributes describing the visual " | |
| "elements, including details such as objects, people, actions, colors, environment, mood, and other notable " | |
| "characteristics. Ensure captions are precise, neutral, and descriptive, avoiding unnecessary elaboration or " | |
| "subjective interpretation unless explicitly required. Do not reference the rules or instructions in the output; " | |
| "only return the formatted caption, attributes, and class_name." | |
| ) | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}] | |
| prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_gif(text: str, gif_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if gif_path is None: | |
| yield "Please upload a GIF.", "Please upload a GIF." | |
| return | |
| frames = extract_gif_frames(gif_path) | |
| if not frames: | |
| yield "Could not process GIF.", "Could not process GIF." | |
| return | |
| messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] | |
| for frame in frames: | |
| messages[0]["content"].insert(0, {"type": "image"}) | |
| prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty} | |
| thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_object_detection(image: Image.Image, text: str, max_new_tokens: int = 256, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if image is None: | |
| yield image, "Please upload an image." | |
| return | |
| if not text: | |
| yield image, "Please enter the object name to detect." | |
| return | |
| prompt = ( | |
| f"You are an expert object detection model. Your task is to find all instances of '{text}' in the image. " | |
| "You must respond ONLY with a JSON list of bounding boxes. Each bounding box must be in the format " | |
| "[x_min, y_min, x_max, y_max], where the coordinates are normalized to be between 0 and 1. " | |
| "Do not provide any other text, explanation, or preamble. For example: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]" | |
| ) | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}] | |
| prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| # This task is not streamed because we need the full output to parse and draw boxes | |
| outputs = model_q3vl.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) | |
| response_text = processor_q3vl.decode(outputs[0], skip_special_tokens=True).strip() | |
| # Extract only the user-facing part of the response | |
| final_text = response_text.split('<|im_end|>')[-1].strip() if '<|im_end|>' in response_text else response_text | |
| annotated_image, raw_output = draw_boxes_on_image(image, final_text, text) | |
| yield annotated_image, raw_output | |
| def generate_point_detection(image: Image.Image, text: str, max_new_tokens: int = 256, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): | |
| if image is None: | |
| yield image, "Please upload an image." | |
| return | |
| if not text: | |
| yield image, "Please enter the object/point name to detect." | |
| return | |
| prompt = ( | |
| f"You are an expert point detection model. Your task is to find the specific location of '{text}' in the image. " | |
| "You must respond ONLY with a JSON list containing a single coordinate pair. The coordinate must be in the format " | |
| "[[x, y]], where the coordinates are normalized to be between 0 and 1. " | |
| "Do not provide any other text, explanation, or preamble. For example: [[0.45, 0.67]]" | |
| ) | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}] | |
| prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| outputs = model_q3vl.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) | |
| response_text = processor_q3vl.decode(outputs[0], skip_special_tokens=True).strip() | |
| final_text = response_text.split('<|im_end|>')[-1].strip() if '<|im_end|>' in response_text else response_text | |
| annotated_image, raw_output = draw_points_on_image(image, final_text) | |
| yield annotated_image, raw_output | |
| image_examples = [["Perform OCR on the image...", "examples/images/1.jpg"], | |
| ["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"], | |
| ["Solve the problem...", "examples/images/3.png"]] | |
| video_examples = [["Explain the Ad video in detail.", "examples/videos/1.mp4"], | |
| ["Explain the video in detail.", "examples/videos/2.mp4"]] | |
| pdf_examples = [["Extract the content precisely.", "examples/pdfs/doc1.pdf"], | |
| ["Analyze and provide a short report.", "examples/pdfs/doc2.pdf"]] | |
| gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"], | |
| ["Describe this GIF.", "examples/gifs/2.gif"]] | |
| caption_examples = [["examples/captions/1.JPG"], | |
| ["examples/captions/2.jpeg"], ["examples/captions/3.jpeg"]] | |
| object_detection_examples = [["a cat", "examples/detection/cat_dog.jpg"], | |
| ["the person in the red shirt", "examples/detection/people.jpg"]] | |
| point_detection_examples = [["the dog's nose", "examples/detection/cat_dog.jpg"], | |
| ["the clock on the wall", "examples/detection/room.jpg"]] | |
| with gr.Blocks(theme=orange_red_theme, css=css) as demo: | |
| pdf_state = gr.State(value=get_initial_pdf_state()) | |
| gr.Markdown("# **Qwen-3VL:Multimodal**", elem_id="main-title") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Upload Image", height=290) | |
| image_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples(examples=image_examples, inputs=[image_query, image_upload]) | |
| with gr.TabItem("Object Detection"): | |
| obj_det_query = gr.Textbox(label="Object to Detect", placeholder="e.g., 'a car', 'the dog'") | |
| obj_det_upload = gr.Image(type="pil", label="Upload Image", height=290) | |
| obj_det_submit = gr.Button("Detect Objects", variant="primary") | |
| gr.Examples(examples=object_detection_examples, inputs=[obj_det_query, obj_det_upload]) | |
| with gr.TabItem("Point Detection"): | |
| point_det_query = gr.Textbox(label="Point to Detect", placeholder="e.g., 'the cat's left eye'") | |
| point_det_upload = gr.Image(type="pil", label="Upload Image", height=290) | |
| point_det_submit = gr.Button("Detect Point", variant="primary") | |
| gr.Examples(examples=point_detection_examples, inputs=[point_det_query, point_det_upload]) | |
| with gr.TabItem("PDF Inference"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'") | |
| pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) | |
| pdf_submit = gr.Button("Submit", variant="primary") | |
| with gr.Column(scale=1): | |
| pdf_preview_img = gr.Image(label="PDF Preview", height=290) | |
| with gr.Row(): | |
| prev_page_btn = gr.Button("◀ Previous") | |
| page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>') | |
| next_page_btn = gr.Button("Next ▶") | |
| gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload]) | |
| with gr.TabItem("Gif Inference"): | |
| gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'") | |
| gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290) | |
| gif_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload]) | |
| with gr.TabItem("Caption"): | |
| caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290) | |
| caption_submit = gr.Button("Generate Caption", variant="primary") | |
| gr.Examples(examples=caption_examples, inputs=[caption_image_upload]) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| video_upload = gr.Video(label="Upload Video(≤30s)", height=290) | |
| video_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples(examples=video_examples, inputs=[video_query, video_upload]) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(scale=3): | |
| gr.Markdown("## Output", elem_id="output-title") | |
| output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True, visible=True) | |
| markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[ | |
| {"left": "$$", "right": "$$", "display": True}, | |
| {"left": "$", "right": "$", "display": False} | |
| ], visible=True) | |
| annotated_image_output = gr.Image(label="Annotated Image", visible=False) | |
| raw_detection_output = gr.Textbox(label="Raw Detection Output", interactive=False, lines=4, show_copy_button=True, visible=False) | |
| def switch_output_visibility(tab_name): | |
| is_detection = tab_name in ["Object Detection", "Point Detection"] | |
| return { | |
| output: gr.update(visible=not is_detection), | |
| markdown_output: gr.update(visible=not is_detection), | |
| annotated_image_output: gr.update(visible=is_detection), | |
| raw_detection_output: gr.update(visible=is_detection), | |
| } | |
| image_submit.click(fn=generate_image, | |
| inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| video_submit.click(fn=generate_video, | |
| inputs=[video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| pdf_submit.click(fn=generate_pdf, | |
| inputs=[pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| gif_submit.click(fn=generate_gif, | |
| inputs=[gif_query, gif_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| caption_submit.click(fn=generate_caption, | |
| inputs=[caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output]) | |
| obj_det_submit.click( | |
| fn=lambda: { | |
| annotated_image_output: gr.update(visible=True), | |
| raw_detection_output: gr.update(visible=True), | |
| output: gr.update(visible=False), | |
| markdown_output: gr.update(visible=False) | |
| }, | |
| outputs=[annotated_image_output, raw_detection_output, output, markdown_output] | |
| ).then( | |
| fn=generate_object_detection, | |
| inputs=[obj_det_upload, obj_det_query, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[annotated_image_output, raw_detection_output] | |
| ) | |
| point_det_submit.click( | |
| fn=lambda: { | |
| annotated_image_output: gr.update(visible=True), | |
| raw_detection_output: gr.update(visible=True), | |
| output: gr.update(visible=False), | |
| markdown_output: gr.update(visible=False) | |
| }, | |
| outputs=[annotated_image_output, raw_detection_output, output, markdown_output] | |
| ).then( | |
| fn=generate_point_detection, | |
| inputs=[point_det_upload, point_det_query, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[annotated_image_output, raw_detection_output] | |
| ) | |
| pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info]) | |
| prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info]) | |
| next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info]) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |