Spaces:
Sleeping
Sleeping
update
Browse files
Raptor.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from sklearn.mixture import GaussianMixture
|
| 3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 4 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 5 |
+
|
| 6 |
+
from typing import Dict, List, Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import umap
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def global_cluster_embeddings(
|
| 14 |
+
embeddings: np.ndarray,
|
| 15 |
+
dim: int,
|
| 16 |
+
n_neighbors: Optional[int] = None,
|
| 17 |
+
metric: str = "cosine",
|
| 18 |
+
) -> np.ndarray:
|
| 19 |
+
if n_neighbors is None:
|
| 20 |
+
n_neighbors = int((len(embeddings) - 1) ** 0.5)
|
| 21 |
+
return umap.UMAP(
|
| 22 |
+
n_neighbors=n_neighbors, n_components=dim, metric=metric
|
| 23 |
+
).fit_transform(embeddings)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def local_cluster_embeddings(
|
| 27 |
+
embeddings: np.ndarray, dim: int, num_neighbors: int = 10, metric: str = "cosine"
|
| 28 |
+
) -> np.ndarray:
|
| 29 |
+
return umap.UMAP(
|
| 30 |
+
n_neighbors=num_neighbors, n_components=dim, metric=metric
|
| 31 |
+
).fit_transform(embeddings)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_optimal_clusters(
|
| 35 |
+
embeddings: np.ndarray, max_clusters: int = 50, random_state: int = 200
|
| 36 |
+
) -> int:
|
| 37 |
+
max_clusters = min(max_clusters, len(embeddings))
|
| 38 |
+
n_clusters = np.arange(1, max_clusters)
|
| 39 |
+
bics = []
|
| 40 |
+
for n in n_clusters:
|
| 41 |
+
gm = GaussianMixture(n_components=n, random_state=random_state)
|
| 42 |
+
gm.fit(embeddings)
|
| 43 |
+
bics.append(gm.bic(embeddings))
|
| 44 |
+
return n_clusters[np.argmin(bics)]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def GMM_cluster(embeddings: np.ndarray, threshold: float, random_state: int = 0):
|
| 48 |
+
n_clusters = get_optimal_clusters(embeddings, random_state = 200)
|
| 49 |
+
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
|
| 50 |
+
gm.fit(embeddings)
|
| 51 |
+
probs = gm.predict_proba(embeddings)
|
| 52 |
+
labels = [np.where(prob > threshold)[0] for prob in probs]
|
| 53 |
+
return labels, n_clusters
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def perform_clustering(
|
| 57 |
+
embeddings: np.ndarray,
|
| 58 |
+
dim: int,
|
| 59 |
+
threshold: float,
|
| 60 |
+
) -> List[np.ndarray]:
|
| 61 |
+
if len(embeddings) <= dim + 1:
|
| 62 |
+
return [np.array([0]) for _ in range(len(embeddings))]
|
| 63 |
+
|
| 64 |
+
reduced_embeddings_global = global_cluster_embeddings(embeddings, dim)
|
| 65 |
+
global_clusters, n_global_clusters = GMM_cluster(
|
| 66 |
+
reduced_embeddings_global, threshold
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
all_local_clusters = [np.array([]) for _ in range(len(embeddings))]
|
| 70 |
+
total_clusters = 0
|
| 71 |
+
|
| 72 |
+
for i in range(n_global_clusters):
|
| 73 |
+
global_cluster_embeddings_ = embeddings[
|
| 74 |
+
np.array([i in gc for gc in global_clusters])
|
| 75 |
+
]
|
| 76 |
+
if len(global_cluster_embeddings_) == 0:
|
| 77 |
+
continue
|
| 78 |
+
if len(global_cluster_embeddings_) <= dim + 1:
|
| 79 |
+
local_clusters = [np.array([0]) for _ in global_cluster_embeddings_]
|
| 80 |
+
n_local_clusters = 1
|
| 81 |
+
else:
|
| 82 |
+
reduced_embeddings_local = local_cluster_embeddings(
|
| 83 |
+
global_cluster_embeddings_, dim
|
| 84 |
+
)
|
| 85 |
+
local_clusters, n_local_clusters = GMM_cluster(
|
| 86 |
+
reduced_embeddings_local, threshold
|
| 87 |
+
)
|
| 88 |
+
for j in range(n_local_clusters):
|
| 89 |
+
local_cluster_embeddings_ = global_cluster_embeddings_[
|
| 90 |
+
np.array([j in lc for lc in local_clusters])
|
| 91 |
+
]
|
| 92 |
+
indices = np.where(
|
| 93 |
+
(embeddings == local_cluster_embeddings_[:, None]).all(-1)
|
| 94 |
+
)[1]
|
| 95 |
+
for idx in indices:
|
| 96 |
+
all_local_clusters[idx] = np.append(
|
| 97 |
+
all_local_clusters[idx], j + total_clusters
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
total_clusters += n_local_clusters
|
| 101 |
+
|
| 102 |
+
return all_local_clusters
|
| 103 |
+
|
| 104 |
+
def embed(embd,texts):
|
| 105 |
+
text_embeddings = embd.embed_documents(texts)
|
| 106 |
+
text_embeddings_np = np.array(text_embeddings)
|
| 107 |
+
return text_embeddings_np
|
| 108 |
+
|
| 109 |
+
def embed_cluster_texts(embd,texts):
|
| 110 |
+
text_embeddings_np = embed(embd,texts) # Generate embeddings
|
| 111 |
+
cluster_labels = perform_clustering(
|
| 112 |
+
text_embeddings_np, 10, 0.1
|
| 113 |
+
)
|
| 114 |
+
df = pd.DataFrame() # Initialize a DataFrame to store the results
|
| 115 |
+
df["text"] = texts # Store original texts
|
| 116 |
+
df["embd"] = list(text_embeddings_np) # Store embeddings as a list in the DataFrame
|
| 117 |
+
df["cluster"] = cluster_labels # Store cluster labels
|
| 118 |
+
return df
|
| 119 |
+
|
| 120 |
+
def fmt_txt(df: pd.DataFrame) -> str:
|
| 121 |
+
unique_txt = df["text"].tolist()
|
| 122 |
+
return "--- --- \n --- --- ".join(unique_txt)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def embed_cluster_summarize_texts(model,embd,
|
| 126 |
+
texts: List[str], level: int
|
| 127 |
+
) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
| 128 |
+
df_clusters = embed_cluster_texts(embd,texts)
|
| 129 |
+
expanded_list = []
|
| 130 |
+
for index, row in df_clusters.iterrows():
|
| 131 |
+
for cluster in row["cluster"]:
|
| 132 |
+
expanded_list.append(
|
| 133 |
+
{"text": row["text"], "embd": row["embd"], "cluster": cluster}
|
| 134 |
+
)
|
| 135 |
+
expanded_df = pd.DataFrame(expanded_list)
|
| 136 |
+
all_clusters = expanded_df["cluster"].unique()
|
| 137 |
+
template = """Bạn là một chatbot hỗ trợ tuyển sinh và sinh viên đại học, hãy tóm tắt chi tiết tài liệu quy chế dưới đây.
|
| 138 |
+
Đảm bảo rằng nội dung tóm tắt giúp người dùng hiểu rõ các quy định và quy trình liên quan đến tuyển sinh hoặc đào tạo tại đại học.
|
| 139 |
+
Tài liệu:
|
| 140 |
+
{context}
|
| 141 |
+
"""
|
| 142 |
+
prompt = ChatPromptTemplate.from_template(template)
|
| 143 |
+
chain = prompt | model | StrOutputParser()
|
| 144 |
+
|
| 145 |
+
summaries = []
|
| 146 |
+
for i in all_clusters:
|
| 147 |
+
df_cluster = expanded_df[expanded_df["cluster"] == i]
|
| 148 |
+
formatted_txt = fmt_txt(df_cluster)
|
| 149 |
+
summaries.append(chain.invoke({"context": formatted_txt}))
|
| 150 |
+
df_summary = pd.DataFrame(
|
| 151 |
+
{
|
| 152 |
+
"summaries": summaries,
|
| 153 |
+
"level": [level] * len(summaries),
|
| 154 |
+
"cluster": list(all_clusters),
|
| 155 |
+
}
|
| 156 |
+
)
|
| 157 |
+
return df_clusters, df_summary
|
| 158 |
+
|
| 159 |
+
def recursive_embed_cluster_summarize(model,embd,
|
| 160 |
+
texts: List[str], level: int = 1, n_levels: int = 3
|
| 161 |
+
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]:
|
| 162 |
+
results = {}
|
| 163 |
+
df_clusters, df_summary = embed_cluster_summarize_texts(model,embd,texts, level)
|
| 164 |
+
results[level] = (df_clusters, df_summary)
|
| 165 |
+
unique_clusters = df_summary["cluster"].nunique()
|
| 166 |
+
if level < n_levels and unique_clusters > 1:
|
| 167 |
+
new_texts = df_summary["summaries"].tolist()
|
| 168 |
+
next_level_results = recursive_embed_cluster_summarize(model,embd,
|
| 169 |
+
new_texts, level + 1, n_levels
|
| 170 |
+
)
|
| 171 |
+
results.update(next_level_results)
|
| 172 |
+
|
| 173 |
+
return results
|
app.py
CHANGED
|
@@ -6,202 +6,11 @@ from langchain_community.document_loaders import TextLoader
|
|
| 6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 7 |
from langchain.prompts import PromptTemplate
|
| 8 |
|
| 9 |
-
from typing import Dict, List, Optional, Tuple
|
| 10 |
-
|
| 11 |
-
import numpy as np
|
| 12 |
-
import pandas as pd
|
| 13 |
-
import umap
|
| 14 |
from langchain_core.output_parsers import StrOutputParser
|
| 15 |
-
from sklearn.mixture import GaussianMixture
|
| 16 |
|
| 17 |
from langchain_core.runnables import RunnablePassthrough
|
| 18 |
from langchain_chroma import Chroma
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def global_cluster_embeddings(
|
| 24 |
-
embeddings: np.ndarray,
|
| 25 |
-
dim: int,
|
| 26 |
-
n_neighbors: Optional[int] = None,
|
| 27 |
-
metric: str = "cosine",
|
| 28 |
-
) -> np.ndarray:
|
| 29 |
-
if n_neighbors is None:
|
| 30 |
-
n_neighbors = int((len(embeddings) - 1) ** 0.5)
|
| 31 |
-
return umap.UMAP(
|
| 32 |
-
n_neighbors=n_neighbors, n_components=dim, metric=metric
|
| 33 |
-
).fit_transform(embeddings)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def local_cluster_embeddings(
|
| 37 |
-
embeddings: np.ndarray, dim: int, num_neighbors: int = 10, metric: str = "cosine"
|
| 38 |
-
) -> np.ndarray:
|
| 39 |
-
return umap.UMAP(
|
| 40 |
-
n_neighbors=num_neighbors, n_components=dim, metric=metric
|
| 41 |
-
).fit_transform(embeddings)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def get_optimal_clusters(
|
| 45 |
-
embeddings: np.ndarray, max_clusters: int = 50, random_state: int = 200
|
| 46 |
-
) -> int:
|
| 47 |
-
max_clusters = min(max_clusters, len(embeddings))
|
| 48 |
-
n_clusters = np.arange(1, max_clusters)
|
| 49 |
-
bics = []
|
| 50 |
-
for n in n_clusters:
|
| 51 |
-
gm = GaussianMixture(n_components=n, random_state=random_state)
|
| 52 |
-
gm.fit(embeddings)
|
| 53 |
-
bics.append(gm.bic(embeddings))
|
| 54 |
-
return n_clusters[np.argmin(bics)]
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def GMM_cluster(embeddings: np.ndarray, threshold: float, random_state: int = 0):
|
| 58 |
-
n_clusters = get_optimal_clusters(embeddings, random_state = 200)
|
| 59 |
-
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
|
| 60 |
-
gm.fit(embeddings)
|
| 61 |
-
probs = gm.predict_proba(embeddings)
|
| 62 |
-
labels = [np.where(prob > threshold)[0] for prob in probs]
|
| 63 |
-
return labels, n_clusters
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def perform_clustering(
|
| 67 |
-
embeddings: np.ndarray,
|
| 68 |
-
dim: int,
|
| 69 |
-
threshold: float,
|
| 70 |
-
) -> List[np.ndarray]:
|
| 71 |
-
if len(embeddings) <= dim + 1:
|
| 72 |
-
# Avoid clustering when there's insufficient data
|
| 73 |
-
return [np.array([0]) for _ in range(len(embeddings))]
|
| 74 |
-
|
| 75 |
-
# Global dimensionality reduction
|
| 76 |
-
reduced_embeddings_global = global_cluster_embeddings(embeddings, dim)
|
| 77 |
-
# Global clustering
|
| 78 |
-
global_clusters, n_global_clusters = GMM_cluster(
|
| 79 |
-
reduced_embeddings_global, threshold
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
all_local_clusters = [np.array([]) for _ in range(len(embeddings))]
|
| 83 |
-
total_clusters = 0
|
| 84 |
-
|
| 85 |
-
# Iterate through each global cluster to perform local clustering
|
| 86 |
-
for i in range(n_global_clusters):
|
| 87 |
-
# Extract embeddings belonging to the current global cluster
|
| 88 |
-
global_cluster_embeddings_ = embeddings[
|
| 89 |
-
np.array([i in gc for gc in global_clusters])
|
| 90 |
-
]
|
| 91 |
-
|
| 92 |
-
if len(global_cluster_embeddings_) == 0:
|
| 93 |
-
continue
|
| 94 |
-
if len(global_cluster_embeddings_) <= dim + 1:
|
| 95 |
-
# Handle small clusters with direct assignment
|
| 96 |
-
local_clusters = [np.array([0]) for _ in global_cluster_embeddings_]
|
| 97 |
-
n_local_clusters = 1
|
| 98 |
-
else:
|
| 99 |
-
# Local dimensionality reduction and clustering
|
| 100 |
-
reduced_embeddings_local = local_cluster_embeddings(
|
| 101 |
-
global_cluster_embeddings_, dim
|
| 102 |
-
)
|
| 103 |
-
local_clusters, n_local_clusters = GMM_cluster(
|
| 104 |
-
reduced_embeddings_local, threshold
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
# Assign local cluster IDs, adjusting for total clusters already processed
|
| 108 |
-
for j in range(n_local_clusters):
|
| 109 |
-
local_cluster_embeddings_ = global_cluster_embeddings_[
|
| 110 |
-
np.array([j in lc for lc in local_clusters])
|
| 111 |
-
]
|
| 112 |
-
indices = np.where(
|
| 113 |
-
(embeddings == local_cluster_embeddings_[:, None]).all(-1)
|
| 114 |
-
)[1]
|
| 115 |
-
for idx in indices:
|
| 116 |
-
all_local_clusters[idx] = np.append(
|
| 117 |
-
all_local_clusters[idx], j + total_clusters
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
total_clusters += n_local_clusters
|
| 121 |
-
|
| 122 |
-
return all_local_clusters
|
| 123 |
-
|
| 124 |
-
def embed(embd,texts):
|
| 125 |
-
text_embeddings = embd.embed_documents(texts)
|
| 126 |
-
text_embeddings_np = np.array(text_embeddings)
|
| 127 |
-
return text_embeddings_np
|
| 128 |
-
|
| 129 |
-
def embed_cluster_texts(embd,texts):
|
| 130 |
-
text_embeddings_np = embed(embd,texts) # Generate embeddings
|
| 131 |
-
cluster_labels = perform_clustering(
|
| 132 |
-
text_embeddings_np, 10, 0.1
|
| 133 |
-
) # Perform clustering on the embeddings
|
| 134 |
-
df = pd.DataFrame() # Initialize a DataFrame to store the results
|
| 135 |
-
df["text"] = texts # Store original texts
|
| 136 |
-
df["embd"] = list(text_embeddings_np) # Store embeddings as a list in the DataFrame
|
| 137 |
-
df["cluster"] = cluster_labels # Store cluster labels
|
| 138 |
-
return df
|
| 139 |
-
|
| 140 |
-
def fmt_txt(df: pd.DataFrame) -> str:
|
| 141 |
-
unique_txt = df["text"].tolist()
|
| 142 |
-
return "--- --- \n --- --- ".join(unique_txt)
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def embed_cluster_summarize_texts(model,embd,
|
| 146 |
-
texts: List[str], level: int
|
| 147 |
-
) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
| 148 |
-
df_clusters = embed_cluster_texts(embd,texts)
|
| 149 |
-
|
| 150 |
-
# Prepare to expand the DataFrame for easier manipulation of clusters
|
| 151 |
-
expanded_list = []
|
| 152 |
-
|
| 153 |
-
# Expand DataFrame entries to document-cluster pairings for straightforward processing
|
| 154 |
-
for index, row in df_clusters.iterrows():
|
| 155 |
-
for cluster in row["cluster"]:
|
| 156 |
-
expanded_list.append(
|
| 157 |
-
{"text": row["text"], "embd": row["embd"], "cluster": cluster}
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
# Create a new DataFrame from the expanded list
|
| 161 |
-
expanded_df = pd.DataFrame(expanded_list)
|
| 162 |
-
|
| 163 |
-
# Retrieve unique cluster identifiers for processing
|
| 164 |
-
all_clusters = expanded_df["cluster"].unique()
|
| 165 |
-
# Summarization
|
| 166 |
-
template = """Bạn là một chatbot hỗ trợ tuyển sinh và sinh viên đại học, hãy tóm tắt chi tiết tài liệu quy chế dưới đây.
|
| 167 |
-
Đảm bảo rằng nội dung tóm tắt giúp người dùng hiểu rõ các quy định và quy trình liên quan đến tuyển sinh hoặc đào tạo tại đại học.
|
| 168 |
-
Tài liệu:
|
| 169 |
-
{context}
|
| 170 |
-
"""
|
| 171 |
-
prompt = ChatPromptTemplate.from_template(template)
|
| 172 |
-
chain = prompt | model | StrOutputParser()
|
| 173 |
-
|
| 174 |
-
summaries = []
|
| 175 |
-
for i in all_clusters:
|
| 176 |
-
df_cluster = expanded_df[expanded_df["cluster"] == i]
|
| 177 |
-
formatted_txt = fmt_txt(df_cluster)
|
| 178 |
-
summaries.append(chain.invoke({"context": formatted_txt}))
|
| 179 |
-
df_summary = pd.DataFrame(
|
| 180 |
-
{
|
| 181 |
-
"summaries": summaries,
|
| 182 |
-
"level": [level] * len(summaries),
|
| 183 |
-
"cluster": list(all_clusters),
|
| 184 |
-
}
|
| 185 |
-
)
|
| 186 |
-
return df_clusters, df_summary
|
| 187 |
-
|
| 188 |
-
def recursive_embed_cluster_summarize(model,embd,
|
| 189 |
-
texts: List[str], level: int = 1, n_levels: int = 3
|
| 190 |
-
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]:
|
| 191 |
-
results = {}
|
| 192 |
-
df_clusters, df_summary = embed_cluster_summarize_texts(model,embd,texts, level)
|
| 193 |
-
|
| 194 |
-
results[level] = (df_clusters, df_summary)
|
| 195 |
-
|
| 196 |
-
unique_clusters = df_summary["cluster"].nunique()
|
| 197 |
-
if level < n_levels and unique_clusters > 1:
|
| 198 |
-
new_texts = df_summary["summaries"].tolist()
|
| 199 |
-
next_level_results = recursive_embed_cluster_summarize(model,embd,
|
| 200 |
-
new_texts, level + 1, n_levels
|
| 201 |
-
)
|
| 202 |
-
results.update(next_level_results)
|
| 203 |
-
|
| 204 |
-
return results
|
| 205 |
|
| 206 |
page = st.title("Chat with AskUSTH")
|
| 207 |
|
|
@@ -313,11 +122,17 @@ def format_docs(docs):
|
|
| 313 |
|
| 314 |
@st.cache_resource
|
| 315 |
def compute_rag_chain(_model, _embd, docs_texts):
|
| 316 |
-
results = recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
|
| 317 |
all_texts = docs_texts.copy()
|
|
|
|
| 318 |
for level in sorted(results.keys()):
|
| 319 |
summaries = results[level][1]["summaries"].tolist()
|
| 320 |
all_texts.extend(summaries)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
vectorstore = Chroma.from_texts(texts=all_texts, embedding=_embd)
|
| 322 |
retriever = vectorstore.as_retriever()
|
| 323 |
template = """
|
|
|
|
| 6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 7 |
from langchain.prompts import PromptTemplate
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
| 10 |
|
| 11 |
from langchain_core.runnables import RunnablePassthrough
|
| 12 |
from langchain_chroma import Chroma
|
| 13 |
+
import Raptor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
page = st.title("Chat with AskUSTH")
|
| 16 |
|
|
|
|
| 122 |
|
| 123 |
@st.cache_resource
|
| 124 |
def compute_rag_chain(_model, _embd, docs_texts):
|
| 125 |
+
results = Raptor.recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
|
| 126 |
all_texts = docs_texts.copy()
|
| 127 |
+
i = 0
|
| 128 |
for level in sorted(results.keys()):
|
| 129 |
summaries = results[level][1]["summaries"].tolist()
|
| 130 |
all_texts.extend(summaries)
|
| 131 |
+
print(f"summary {i} -------------------------------------------------")
|
| 132 |
+
print(summaries)
|
| 133 |
+
i += 1
|
| 134 |
+
print("all_texts ______________________________________")
|
| 135 |
+
print(all_texts)
|
| 136 |
vectorstore = Chroma.from_texts(texts=all_texts, embedding=_embd)
|
| 137 |
retriever = vectorstore.as_retriever()
|
| 138 |
template = """
|