Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import json | |
| import io | |
| import boto3 | |
| import base64 | |
| from PIL import Image | |
| from settings_mgr import generate_download_settings_js, generate_upload_settings_js | |
| from llm import LLM, log_to_console | |
| from botocore.config import Config | |
| dump_controls = False | |
| def dump(history): | |
| return str(history) | |
| def load_settings(): | |
| # Dummy Python function, actual loading is done in JS | |
| pass | |
| def save_settings(acc, sec, prompt, temp): | |
| # Dummy Python function, actual saving is done in JS | |
| pass | |
| def process_values_js(): | |
| return """ | |
| () => { | |
| return ["access_key", "secret_key", "token"]; | |
| } | |
| """ | |
| def bot(message, history, aws_access, aws_secret, aws_token, system_prompt, temperature, max_tokens, model: str, region): | |
| try: | |
| llm = LLM.create_llm(model) | |
| messages = llm.generate_body(message, history) | |
| if system_prompt: | |
| sys_prompt = [{"text": system_prompt}] | |
| else: | |
| sys_prompt = [] | |
| config = Config( | |
| read_timeout = 600, | |
| connect_timeout = 30, | |
| retries = { | |
| 'max_attempts': 10, | |
| 'mode': 'adaptive' | |
| } | |
| ) | |
| sess = boto3.Session( | |
| aws_access_key_id = aws_access, | |
| aws_secret_access_key = aws_secret, | |
| aws_session_token = aws_token, | |
| region_name = region) | |
| br = sess.client(service_name="bedrock-runtime", config = config) | |
| response = br.converse_stream( | |
| modelId = model, | |
| messages = messages, | |
| system = sys_prompt, | |
| inferenceConfig = { | |
| "temperature": 1, | |
| "maxTokens": max_tokens, | |
| } | |
| ) | |
| response_stream = response.get('stream') | |
| partial_response = "" | |
| for chunk in llm.read_response(response_stream): | |
| partial_response += chunk | |
| yield partial_response | |
| except Exception as e: | |
| raise gr.Error(f"Error: {str(e)}") | |
| def import_history(history, file): | |
| with open(file.name, mode="rb") as f: | |
| content = f.read() | |
| if isinstance(content, bytes): | |
| content = content.decode('utf-8', 'replace') | |
| else: | |
| content = str(content) | |
| # Deserialize the JSON content | |
| import_data = json.loads(content) | |
| # Check if 'history' key exists for backward compatibility | |
| if 'history' in import_data: | |
| history = import_data['history'] | |
| system_prompt_value = import_data.get('system_prompt', '') # Set default if not present | |
| else: | |
| # Assume it's an old format with only history data | |
| history = import_data | |
| system_prompt_value = '' | |
| # Process the history to handle image data | |
| processed_history = [] | |
| for pair in history: | |
| processed_pair = [] | |
| for message in pair: | |
| if isinstance(message, dict) and 'file' in message and 'data' in message['file']: | |
| # Create a gradio.Image from the base64 data | |
| image_data = base64.b64decode(message['file']['data'].split(',')[1]) | |
| img = Image.open(io.BytesIO(image_data)) | |
| gr_image = gr.Image(img) | |
| processed_pair.append(gr_image) | |
| gr.Warning("Reusing images across sessions is limited to one conversation turn") | |
| else: | |
| processed_pair.append(message) | |
| processed_history.append(processed_pair) | |
| return processed_history, system_prompt_value | |
| def export_history(h, s): | |
| pass | |
| with gr.Blocks(delete_cache=(86400, 86400)) as demo: | |
| gr.Markdown("# Amazon™️ Bedrock™️ Chat™️ (Nils' Version™️) feat. Mistral™️ AI & Anthropic™️ Claude™️") | |
| with gr.Accordion("Startup"): | |
| gr.Markdown("""Use of this interface permitted under the terms and conditions of the | |
| [MIT license](https://github.com/ndurner/amz_bedrock_chat/blob/main/LICENSE). | |
| Third party terms and conditions apply, particularly | |
| those of the LLM vendor (AWS) and hosting provider (Hugging Face). This software and the AI models may make mistakes, so verify all outputs.""") | |
| aws_access = gr.Textbox(label="AWS Access Key", elem_id="aws_access") | |
| aws_secret = gr.Textbox(label="AWS Secret Key", elem_id="aws_secret") | |
| aws_token = gr.Textbox(label="AWS Session Token", elem_id="aws_token") | |
| model = gr.Dropdown(label="Model", value="anthropic.claude-3-5-sonnet-20240620-v1:0", allow_custom_value=True, elem_id="model", | |
| choices=["anthropic.claude-3-5-sonnet-20240620-v1:0", "anthropic.claude-3-opus-20240229-v1:0", "meta.llama3-1-405b-instruct-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-v2:1", "anthropic.claude-v2", | |
| "mistral.mistral-7b-instruct-v0:2", "mistral.mixtral-8x7b-instruct-v0:1", "mistral.mistral-large-2407-v1:0", "anthropic.claude-3-5-sonnet-20241022-v2:0"]) | |
| system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt") | |
| region = gr.Dropdown(label="Region", value="us-west-2", allow_custom_value=True, elem_id="region", | |
| choices=["eu-central-1", "eu-west-3", "us-east-1", "us-west-1", "us-west-2"]) | |
| temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1) | |
| max_tokens = gr.Slider(1, 8192, label="Max. Tokens", elem_id="max_tokens", value=4096) | |
| save_button = gr.Button("Save Settings") | |
| load_button = gr.Button("Load Settings") | |
| dl_settings_button = gr.Button("Download Settings") | |
| ul_settings_button = gr.Button("Upload Settings") | |
| load_button.click(load_settings, js=""" | |
| () => { | |
| let elems = ['#aws_access textarea', '#aws_secret textarea', '#aws_token textarea', '#system_prompt textarea', '#temp input', '#max_tokens input', '#model', '#region']; | |
| elems.forEach(elem => { | |
| let item = document.querySelector(elem); | |
| let event = new InputEvent('input', { bubbles: true }); | |
| item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || ''; | |
| item.dispatchEvent(event); | |
| }); | |
| } | |
| """) | |
| save_button.click(save_settings, [aws_access, aws_secret, aws_token, system_prompt, temp, max_tokens, model, region], js=""" | |
| (acc, sec, tok, system_prompt, temp, ntok, model, region) => { | |
| localStorage.setItem('aws_access', acc); | |
| localStorage.setItem('aws_secret', sec); | |
| localStorage.setItem('aws_token', tok); | |
| localStorage.setItem('system_prompt', system_prompt); | |
| localStorage.setItem('temp', document.querySelector('#temp input').value); | |
| localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value); | |
| localStorage.setItem('model', model); | |
| localStorage.setItem('region', region); | |
| } | |
| """) | |
| control_ids = [('aws_access', '#aws_access textarea'), | |
| ('aws_secret', '#aws_secret textarea'), | |
| ('aws_token', '#aws_token textarea'), | |
| ('system_prompt', '#system_prompt textarea'), | |
| ('temp', '#temp input'), | |
| ('max_tokens', '#max_tokens input'), | |
| ('model', '#model'), | |
| ('region', '#region')] | |
| controls = [aws_access, aws_secret, aws_token, system_prompt, temp, max_tokens, model, region] | |
| dl_settings_button.click(None, controls, js=generate_download_settings_js("amz_chat_settings.bin", control_ids)) | |
| ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids)) | |
| chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, autofocus = False) | |
| chat.textbox.file_count = "multiple" | |
| chatbot = chat.chatbot | |
| chatbot.show_copy_button = True | |
| chatbot.height = 450 | |
| if dump_controls: | |
| with gr.Row(): | |
| dmp_btn = gr.Button("Dump") | |
| txt_dmp = gr.Textbox("Dump") | |
| dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp]) | |
| with gr.Accordion("Import/Export", open = False): | |
| import_button = gr.UploadButton("History Import") | |
| export_button = gr.Button("History Export") | |
| export_button.click(export_history, [chatbot, system_prompt], js=""" | |
| async (chat_history, system_prompt) => { | |
| console.log('Chat History:', JSON.stringify(chat_history, null, 2)); | |
| async function fetchAndEncodeImage(url) { | |
| const response = await fetch(url); | |
| const blob = await response.blob(); | |
| return new Promise((resolve, reject) => { | |
| const reader = new FileReader(); | |
| reader.onloadend = () => resolve(reader.result); | |
| reader.onerror = reject; | |
| reader.readAsDataURL(blob); | |
| }); | |
| } | |
| const processedHistory = await Promise.all(chat_history.map(async (pair) => { | |
| return await Promise.all(pair.map(async (message) => { | |
| if (message && message.file && message.file.url) { | |
| const base64Image = await fetchAndEncodeImage(message.file.url); | |
| return { | |
| ...message, | |
| file: { | |
| ...message.file, | |
| data: base64Image | |
| } | |
| }; | |
| } | |
| return message; | |
| })); | |
| })); | |
| const export_data = { | |
| history: processedHistory, | |
| system_prompt: system_prompt | |
| }; | |
| const history_json = JSON.stringify(export_data); | |
| const blob = new Blob([history_json], {type: 'application/json'}); | |
| const url = URL.createObjectURL(blob); | |
| const a = document.createElement('a'); | |
| a.href = url; | |
| a.download = 'chat_history.json'; | |
| document.body.appendChild(a); | |
| a.click(); | |
| document.body.removeChild(a); | |
| URL.revokeObjectURL(url); | |
| } | |
| """) | |
| dl_button = gr.Button("File download") | |
| dl_button.click(lambda: None, [chatbot], js=""" | |
| (chat_history) => { | |
| // Attempt to extract content enclosed in backticks with an optional filename | |
| const contentRegex = /```(\\S*\\.(\\S+))?\\n?([\\s\\S]*?)```/; | |
| const match = contentRegex.exec(chat_history[chat_history.length - 1][1]); | |
| if (match && match[3]) { | |
| // Extract the content and the file extension | |
| const content = match[3]; | |
| const fileExtension = match[2] || 'txt'; // Default to .txt if extension is not found | |
| const filename = match[1] || `download.${fileExtension}`; | |
| // Create a Blob from the content | |
| const blob = new Blob([content], {type: `text/${fileExtension}`}); | |
| // Create a download link for the Blob | |
| const url = URL.createObjectURL(blob); | |
| const a = document.createElement('a'); | |
| a.href = url; | |
| // If the filename from the chat history doesn't have an extension, append the default | |
| a.download = filename.includes('.') ? filename : `${filename}.${fileExtension}`; | |
| document.body.appendChild(a); | |
| a.click(); | |
| document.body.removeChild(a); | |
| URL.revokeObjectURL(url); | |
| } else { | |
| // Inform the user if the content is malformed or missing | |
| alert('Sorry, the file content could not be found or is in an unrecognized format.'); | |
| } | |
| } | |
| """) | |
| import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt]) | |
| demo.queue().launch() |