Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
import torchaudio
|
| 4 |
-
# from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 5 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
|
| 6 |
from transformers.models.speecht5 import SpeechT5HifiGan
|
| 7 |
|
| 8 |
-
|
| 9 |
# Load model and processor
|
| 10 |
processor = SpeechT5Processor.from_pretrained("nambn0321/T5_british")
|
| 11 |
model = SpeechT5ForTextToSpeech.from_pretrained(
|
|
@@ -20,35 +18,37 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 20 |
model = model.to(device)
|
| 21 |
vocoder = vocoder.to(device)
|
| 22 |
|
| 23 |
-
|
| 24 |
def tts_generate(text):
|
| 25 |
-
print(f"
|
| 26 |
try:
|
| 27 |
# Preprocess input
|
| 28 |
-
print("
|
| 29 |
inputs = processor(text=text, return_tensors="pt").to(device)
|
| 30 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
print("🎤
|
| 34 |
with torch.no_grad():
|
| 35 |
-
waveform =
|
| 36 |
-
|
| 37 |
-
vocoder=vocoder
|
| 38 |
-
)
|
| 39 |
-
print(" Waveform generated.")
|
| 40 |
|
| 41 |
# Save waveform
|
| 42 |
output_path = "output.wav"
|
| 43 |
if waveform.dim() == 1:
|
| 44 |
waveform = waveform.unsqueeze(0)
|
| 45 |
torchaudio.save(output_path, waveform.cpu(), sample_rate=16000)
|
| 46 |
-
print(f"
|
| 47 |
|
| 48 |
return output_path
|
| 49 |
|
| 50 |
except Exception as e:
|
| 51 |
-
print("
|
| 52 |
return "Error during speech synthesis."
|
| 53 |
|
| 54 |
# Gradio interface
|
|
@@ -61,7 +61,5 @@ demo = gr.Interface(
|
|
| 61 |
)
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
print("
|
| 65 |
demo.launch()
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
import torchaudio
|
|
|
|
| 4 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
|
| 5 |
from transformers.models.speecht5 import SpeechT5HifiGan
|
| 6 |
|
|
|
|
| 7 |
# Load model and processor
|
| 8 |
processor = SpeechT5Processor.from_pretrained("nambn0321/T5_british")
|
| 9 |
model = SpeechT5ForTextToSpeech.from_pretrained(
|
|
|
|
| 18 |
model = model.to(device)
|
| 19 |
vocoder = vocoder.to(device)
|
| 20 |
|
|
|
|
| 21 |
def tts_generate(text):
|
| 22 |
+
print(f"Input text: {text}")
|
| 23 |
try:
|
| 24 |
# Preprocess input
|
| 25 |
+
print("Processing input...")
|
| 26 |
inputs = processor(text=text, return_tensors="pt").to(device)
|
| 27 |
+
print("Text processed.")
|
| 28 |
+
|
| 29 |
+
# Generate mel spectrogram with the TTS model (instead of using .generate_speech directly)
|
| 30 |
+
print("🎤 Generating mel spectrogram...")
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
mel_output, _ = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
| 33 |
+
print("Mel spectrogram generated.")
|
| 34 |
|
| 35 |
+
# Vocoder to generate waveform from mel spectrogram
|
| 36 |
+
print("🎤 Vocoding to waveform...")
|
| 37 |
with torch.no_grad():
|
| 38 |
+
waveform = vocoder.decode(mel_output)
|
| 39 |
+
print("Waveform generated.")
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Save waveform
|
| 42 |
output_path = "output.wav"
|
| 43 |
if waveform.dim() == 1:
|
| 44 |
waveform = waveform.unsqueeze(0)
|
| 45 |
torchaudio.save(output_path, waveform.cpu(), sample_rate=16000)
|
| 46 |
+
print(f"Audio saved to {output_path}")
|
| 47 |
|
| 48 |
return output_path
|
| 49 |
|
| 50 |
except Exception as e:
|
| 51 |
+
print("Error during TTS generation:", e)
|
| 52 |
return "Error during speech synthesis."
|
| 53 |
|
| 54 |
# Gradio interface
|
|
|
|
| 61 |
)
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
+
print("Launching Gradio demo...")
|
| 65 |
demo.launch()
|
|
|
|
|
|