import os import shutil import torch import torchvision.transforms as tform from PIL import Image def cpu(xs): if not isinstance(xs, (list, tuple)): return xs.cpu() else: return [x.cpu() for x in xs] def cuda(xs): if torch.cuda.is_available(): if not isinstance(xs, (list, tuple)): return xs.cuda() else: return [x.cuda() for x in xs] else: return xs def load_checkpoint(ckpt_dir_or_file, map_location=None, load_best=False): if os.path.isdir(ckpt_dir_or_file): if load_best: ckpt_path = os.path.join(ckpt_dir_or_file, 'best_model.ckpt') else: with open(os.path.join(ckpt_dir_or_file, 'latest_checkpoint')) as f: ckpt_path = os.path.join(ckpt_dir_or_file, f.readline()[:-1]) # -1去掉换行符 else: ckpt_path = ckpt_dir_or_file ckpt = torch.load(ckpt_path, map_location=map_location) print(' [*] Loading checkpoint succeeds! Copy variables from % s!' % ckpt_path) return ckpt def save_checkpoint(obj, save_path, is_best=False, max_keep=None): # save checkpoint torch.save(obj, save_path) # deal with max_keep save_dir = os.path.dirname(save_path) list_path = os.path.join(save_dir, 'latest_checkpoint') save_path = os.path.basename(save_path) if os.path.exists(list_path): with open(list_path) as f: ckpt_list = f.readlines() ckpt_list = [save_path + '\n'] + ckpt_list else: ckpt_list = [save_path + '\n'] if max_keep is not None: for ckpt in ckpt_list[max_keep:]: ckpt = os.path.join(save_dir, ckpt[:-1]) if os.path.exists(ckpt): os.remove(ckpt) ckpt_list[max_keep:] = [] with open(list_path, 'w') as f: f.writelines(ckpt_list) # copy best if is_best: shutil.copyfile(save_path, os.path.join(save_dir, 'best_model.ckpt')) def get_img_from_file(file_name, target_device, transform=False): img = tform.ToTensor()(Image.open(file_name)) # [0, 1.0] tensor if transform: val_test_img_transform = tform.Compose([ # crop face area 190 * 178 # tform.Lambda(lambda x: x[:, 14:204, :]), # center crop and resize on PLI image tform.ToPILImage(), tform.CenterCrop(170), # origin # elegant crop # tform.CenterCrop(178), tform.Resize(256, Image.BICUBIC), # elegant crop # back to tensor tform.ToTensor(), ]) img = val_test_img_transform(img) return (img * 2 - 1).to(target_device)