Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +168 -168
- requirements.txt +5 -0
app.py
CHANGED
|
@@ -1,168 +1,168 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import traceback
|
| 3 |
-
import numpy as np
|
| 4 |
-
import streamlit as st
|
| 5 |
-
from PIL import Image
|
| 6 |
-
from transformers import pipeline
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
-
from skimage.color import rgb2gray
|
| 9 |
-
from skimage.filters import threshold_otsu
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# =======================
|
| 13 |
-
# Configuration and Setup
|
| 14 |
-
# =======================
|
| 15 |
-
|
| 16 |
-
# Streamlit Page Configuration
|
| 17 |
-
st.set_page_config(
|
| 18 |
-
page_title="AI Cancer Detection Platform",
|
| 19 |
-
page_icon="🩺",
|
| 20 |
-
layout="wide",
|
| 21 |
-
initial_sidebar_state="expanded",
|
| 22 |
-
menu_items={
|
| 23 |
-
"About": "### AI Cancer Detection Platform\n"
|
| 24 |
-
"Developed to classify cancer images and provide research insights."
|
| 25 |
-
}
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# =======================
|
| 30 |
-
# Helper Functions
|
| 31 |
-
# =======================
|
| 32 |
-
|
| 33 |
-
@st.cache_resource
|
| 34 |
-
def load_pipeline():
|
| 35 |
-
"""
|
| 36 |
-
Load the pre-trained image classification pipeline using PyTorch as the backend.
|
| 37 |
-
"""
|
| 38 |
-
try:
|
| 39 |
-
model_pipeline = pipeline(
|
| 40 |
-
"image-classification",
|
| 41 |
-
model="Anwarkh1/Skin_Cancer-Image_Classification",
|
| 42 |
-
framework="pt" # Force PyTorch backend
|
| 43 |
-
)
|
| 44 |
-
return model_pipeline
|
| 45 |
-
except Exception as e:
|
| 46 |
-
st.error(f"Error loading model: {e}")
|
| 47 |
-
traceback.print_exc()
|
| 48 |
-
st.stop()
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
def process_image(image):
|
| 52 |
-
"""
|
| 53 |
-
Perform image processing to extract features for better visualization.
|
| 54 |
-
"""
|
| 55 |
-
try:
|
| 56 |
-
# Convert image to grayscale
|
| 57 |
-
gray_image = rgb2gray(np.array(image))
|
| 58 |
-
|
| 59 |
-
# Apply Otsu's threshold
|
| 60 |
-
thresh = threshold_otsu(gray_image)
|
| 61 |
-
binary = gray_image > thresh
|
| 62 |
-
|
| 63 |
-
# Calculate edge pixel percentage
|
| 64 |
-
edge_pixels = np.sum(binary)
|
| 65 |
-
total_pixels = binary.size
|
| 66 |
-
edge_percentage = (edge_pixels / total_pixels) * 100
|
| 67 |
-
|
| 68 |
-
# Generate plots
|
| 69 |
-
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
| 70 |
-
ax[0].imshow(gray_image, cmap="gray")
|
| 71 |
-
ax[0].set_title("Grayscale Image")
|
| 72 |
-
ax[0].axis("off")
|
| 73 |
-
|
| 74 |
-
ax[1].imshow(binary, cmap="gray")
|
| 75 |
-
ax[1].set_title("Binary Image (Thresholded)")
|
| 76 |
-
ax[1].axis("off")
|
| 77 |
-
|
| 78 |
-
plt.tight_layout()
|
| 79 |
-
st.pyplot(fig)
|
| 80 |
-
|
| 81 |
-
# Feature description
|
| 82 |
-
return f"{edge_percentage:.2f}% of the image contains edge pixels after thresholding."
|
| 83 |
-
|
| 84 |
-
except Exception as e:
|
| 85 |
-
st.error(f"Error processing image: {e}")
|
| 86 |
-
traceback.print_exc()
|
| 87 |
-
return "No significant features extracted."
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
def classify_image(image, model_pipeline):
|
| 91 |
-
"""
|
| 92 |
-
Classify the uploaded image using the pre-trained model pipeline.
|
| 93 |
-
"""
|
| 94 |
-
try:
|
| 95 |
-
# Resize image to 224x224 as required by the model
|
| 96 |
-
image_resized = image.resize((224, 224))
|
| 97 |
-
predictions = model_pipeline(image_resized)
|
| 98 |
-
|
| 99 |
-
if predictions:
|
| 100 |
-
top_prediction = predictions[0]
|
| 101 |
-
label = top_prediction["label"]
|
| 102 |
-
score = top_prediction["score"]
|
| 103 |
-
return label, score
|
| 104 |
-
else:
|
| 105 |
-
st.warning("No predictions were made.")
|
| 106 |
-
return None, None
|
| 107 |
-
except Exception as e:
|
| 108 |
-
st.error(f"Error during classification: {e}")
|
| 109 |
-
traceback.print_exc()
|
| 110 |
-
return None, None
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
# =======================
|
| 114 |
-
# Streamlit Main Content
|
| 115 |
-
# =======================
|
| 116 |
-
|
| 117 |
-
st.title("🩺 AI-Powered Cancer Detection")
|
| 118 |
-
|
| 119 |
-
# Image Upload Section
|
| 120 |
-
st.subheader("📤 Upload a Cancer Image")
|
| 121 |
-
uploaded_image = st.file_uploader("Choose an image file...", type=["png", "jpg", "jpeg"])
|
| 122 |
-
|
| 123 |
-
if uploaded_image is not None:
|
| 124 |
-
try:
|
| 125 |
-
# Open the uploaded image
|
| 126 |
-
image = Image.open(uploaded_image).convert("RGB")
|
| 127 |
-
|
| 128 |
-
# Display the uploaded image
|
| 129 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 130 |
-
|
| 131 |
-
# Process the image
|
| 132 |
-
st.markdown("### 🛠️ Image Processing")
|
| 133 |
-
processed_features = process_image(image)
|
| 134 |
-
|
| 135 |
-
# Load the model pipeline
|
| 136 |
-
st.markdown("### 🔍 Classifying the Image")
|
| 137 |
-
model_pipeline = load_pipeline()
|
| 138 |
-
|
| 139 |
-
# Classify the image
|
| 140 |
-
with st.spinner("Classifying..."):
|
| 141 |
-
label, confidence = classify_image(image, model_pipeline)
|
| 142 |
-
|
| 143 |
-
if label and confidence:
|
| 144 |
-
st.write(f"**Prediction:** {label}")
|
| 145 |
-
st.write(f"**Confidence:** {confidence:.2%}")
|
| 146 |
-
|
| 147 |
-
# Highlight prediction confidence
|
| 148 |
-
if confidence > 0.80:
|
| 149 |
-
st.success("High confidence in the prediction.")
|
| 150 |
-
elif confidence > 0.50:
|
| 151 |
-
st.warning("Moderate confidence in the prediction.")
|
| 152 |
-
else:
|
| 153 |
-
st.error("Low confidence in the prediction.")
|
| 154 |
-
|
| 155 |
-
except Exception as e:
|
| 156 |
-
st.error(f"An unexpected error occurred: {e}")
|
| 157 |
-
traceback.print_exc()
|
| 158 |
-
else:
|
| 159 |
-
st.info("Upload an image to start the classification.")
|
| 160 |
-
|
| 161 |
-
# =======================
|
| 162 |
-
# Footer
|
| 163 |
-
# =======================
|
| 164 |
-
|
| 165 |
-
st.markdown("""
|
| 166 |
-
---
|
| 167 |
-
**AI Cancer Detection Platform** | This application is for informational purposes only and is not intended for medical diagnosis.
|
| 168 |
-
""")
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import traceback
|
| 3 |
+
import numpy as np
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from skimage.color import rgb2gray
|
| 9 |
+
from skimage.filters import threshold_otsu
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# =======================
|
| 13 |
+
# Configuration and Setup
|
| 14 |
+
# =======================
|
| 15 |
+
|
| 16 |
+
# Streamlit Page Configuration
|
| 17 |
+
st.set_page_config(
|
| 18 |
+
page_title="AI Cancer Detection Platform",
|
| 19 |
+
page_icon="🩺",
|
| 20 |
+
layout="wide",
|
| 21 |
+
initial_sidebar_state="expanded",
|
| 22 |
+
menu_items={
|
| 23 |
+
"About": "### AI Cancer Detection Platform\n"
|
| 24 |
+
"Developed to classify cancer images and provide research insights."
|
| 25 |
+
}
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# =======================
|
| 30 |
+
# Helper Functions
|
| 31 |
+
# =======================
|
| 32 |
+
|
| 33 |
+
@st.cache_resource
|
| 34 |
+
def load_pipeline():
|
| 35 |
+
"""
|
| 36 |
+
Load the pre-trained image classification pipeline using PyTorch as the backend.
|
| 37 |
+
"""
|
| 38 |
+
try:
|
| 39 |
+
model_pipeline = pipeline(
|
| 40 |
+
"image-classification",
|
| 41 |
+
model="Anwarkh1/Skin_Cancer-Image_Classification",
|
| 42 |
+
framework="pt" # Force PyTorch backend
|
| 43 |
+
)
|
| 44 |
+
return model_pipeline
|
| 45 |
+
except Exception as e:
|
| 46 |
+
st.error(f"Error loading model: {e}")
|
| 47 |
+
traceback.print_exc()
|
| 48 |
+
st.stop()
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def process_image(image):
|
| 52 |
+
"""
|
| 53 |
+
Perform image processing to extract features for better visualization.
|
| 54 |
+
"""
|
| 55 |
+
try:
|
| 56 |
+
# Convert image to grayscale
|
| 57 |
+
gray_image = rgb2gray(np.array(image))
|
| 58 |
+
|
| 59 |
+
# Apply Otsu's threshold
|
| 60 |
+
thresh = threshold_otsu(gray_image)
|
| 61 |
+
binary = gray_image > thresh
|
| 62 |
+
|
| 63 |
+
# Calculate edge pixel percentage
|
| 64 |
+
edge_pixels = np.sum(binary)
|
| 65 |
+
total_pixels = binary.size
|
| 66 |
+
edge_percentage = (edge_pixels / total_pixels) * 100
|
| 67 |
+
|
| 68 |
+
# Generate plots
|
| 69 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
| 70 |
+
ax[0].imshow(gray_image, cmap="gray")
|
| 71 |
+
ax[0].set_title("Grayscale Image")
|
| 72 |
+
ax[0].axis("off")
|
| 73 |
+
|
| 74 |
+
ax[1].imshow(binary, cmap="gray")
|
| 75 |
+
ax[1].set_title("Binary Image (Thresholded)")
|
| 76 |
+
ax[1].axis("off")
|
| 77 |
+
|
| 78 |
+
plt.tight_layout()
|
| 79 |
+
st.pyplot(fig)
|
| 80 |
+
|
| 81 |
+
# Feature description
|
| 82 |
+
return f"{edge_percentage:.2f}% of the image contains edge pixels after thresholding."
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
st.error(f"Error processing image: {e}")
|
| 86 |
+
traceback.print_exc()
|
| 87 |
+
return "No significant features extracted."
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def classify_image(image, model_pipeline):
|
| 91 |
+
"""
|
| 92 |
+
Classify the uploaded image using the pre-trained model pipeline.
|
| 93 |
+
"""
|
| 94 |
+
try:
|
| 95 |
+
# Resize image to 224x224 as required by the model
|
| 96 |
+
image_resized = image.resize((224, 224))
|
| 97 |
+
predictions = model_pipeline(image_resized)
|
| 98 |
+
|
| 99 |
+
if predictions:
|
| 100 |
+
top_prediction = predictions[0]
|
| 101 |
+
label = top_prediction["label"]
|
| 102 |
+
score = top_prediction["score"]
|
| 103 |
+
return label, score
|
| 104 |
+
else:
|
| 105 |
+
st.warning("No predictions were made.")
|
| 106 |
+
return None, None
|
| 107 |
+
except Exception as e:
|
| 108 |
+
st.error(f"Error during classification: {e}")
|
| 109 |
+
traceback.print_exc()
|
| 110 |
+
return None, None
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# =======================
|
| 114 |
+
# Streamlit Main Content
|
| 115 |
+
# =======================
|
| 116 |
+
|
| 117 |
+
st.title("🩺 AI-Powered Cancer Detection")
|
| 118 |
+
|
| 119 |
+
# Image Upload Section
|
| 120 |
+
st.subheader("📤 Upload a Cancer Image")
|
| 121 |
+
uploaded_image = st.file_uploader("Choose an image file...", type=["png", "jpg", "jpeg"])
|
| 122 |
+
|
| 123 |
+
if uploaded_image is not None:
|
| 124 |
+
try:
|
| 125 |
+
# Open the uploaded image
|
| 126 |
+
image = Image.open(uploaded_image).convert("RGB")
|
| 127 |
+
|
| 128 |
+
# Display the uploaded image
|
| 129 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 130 |
+
|
| 131 |
+
# Process the image
|
| 132 |
+
st.markdown("### 🛠️ Image Processing")
|
| 133 |
+
processed_features = process_image(image)
|
| 134 |
+
|
| 135 |
+
# Load the model pipeline
|
| 136 |
+
st.markdown("### 🔍 Classifying the Image")
|
| 137 |
+
model_pipeline = load_pipeline()
|
| 138 |
+
|
| 139 |
+
# Classify the image
|
| 140 |
+
with st.spinner("Classifying..."):
|
| 141 |
+
label, confidence = classify_image(image, model_pipeline)
|
| 142 |
+
|
| 143 |
+
if label and confidence:
|
| 144 |
+
st.write(f"**Prediction:** {label}")
|
| 145 |
+
st.write(f"**Confidence:** {confidence:.2%}")
|
| 146 |
+
|
| 147 |
+
# Highlight prediction confidence
|
| 148 |
+
if confidence > 0.80:
|
| 149 |
+
st.success("High confidence in the prediction.")
|
| 150 |
+
elif confidence > 0.50:
|
| 151 |
+
st.warning("Moderate confidence in the prediction.")
|
| 152 |
+
else:
|
| 153 |
+
st.error("Low confidence in the prediction.")
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
st.error(f"An unexpected error occurred: {e}")
|
| 157 |
+
traceback.print_exc()
|
| 158 |
+
else:
|
| 159 |
+
st.info("Upload an image to start the classification.")
|
| 160 |
+
|
| 161 |
+
# =======================
|
| 162 |
+
# Footer
|
| 163 |
+
# =======================
|
| 164 |
+
|
| 165 |
+
st.markdown("""
|
| 166 |
+
---
|
| 167 |
+
**AI Cancer Detection Platform** | This application is for informational purposes only and is not intended for medical diagnosis.
|
| 168 |
+
""")
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
requests
|
| 5 |
+
pillow
|