Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,8 +4,9 @@ import torchvision.transforms as transforms
|
|
| 4 |
from PIL import Image
|
| 5 |
import requests
|
| 6 |
from io import BytesIO
|
| 7 |
-
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 8 |
import json
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Load ImageNet class labels
|
| 11 |
LABELS_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
|
|
@@ -16,8 +17,21 @@ def load_model():
|
|
| 16 |
"""
|
| 17 |
Load model and processor from Hugging Face Hub
|
| 18 |
"""
|
| 19 |
-
model_id = "jatingocodeo/ImageNet"
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
processor = AutoImageProcessor.from_pretrained(model_id)
|
| 22 |
return model, processor
|
| 23 |
|
|
@@ -31,18 +45,16 @@ def predict(image):
|
|
| 31 |
try:
|
| 32 |
# Load model and processor (with caching)
|
| 33 |
model, processor = load_model()
|
| 34 |
-
model.eval()
|
| 35 |
|
| 36 |
# Process image
|
| 37 |
inputs = processor(image, return_tensors="pt")
|
| 38 |
|
| 39 |
# Get predictions
|
| 40 |
with torch.no_grad():
|
| 41 |
-
outputs = model(
|
| 42 |
-
logits = outputs.logits
|
| 43 |
|
| 44 |
# Get probabilities and classes
|
| 45 |
-
probs = torch.nn.functional.softmax(
|
| 46 |
top_probs, top_indices = torch.topk(probs, k=5)
|
| 47 |
|
| 48 |
# Format results
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import requests
|
| 6 |
from io import BytesIO
|
|
|
|
| 7 |
import json
|
| 8 |
+
import torchvision.models as models
|
| 9 |
+
from transformers import AutoImageProcessor
|
| 10 |
|
| 11 |
# Load ImageNet class labels
|
| 12 |
LABELS_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
|
|
|
|
| 17 |
"""
|
| 18 |
Load model and processor from Hugging Face Hub
|
| 19 |
"""
|
| 20 |
+
model_id = "jatingocodeo/ImageNet"
|
| 21 |
+
|
| 22 |
+
# Initialize ResNet50 model
|
| 23 |
+
model = models.resnet50(weights=None)
|
| 24 |
+
model.fc = torch.nn.Linear(model.fc.in_features, 1000) # 1000 ImageNet classes
|
| 25 |
+
|
| 26 |
+
# Load model weights
|
| 27 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
| 28 |
+
f"https://huggingface.co/{model_id}/resolve/main/pytorch_model.bin",
|
| 29 |
+
map_location="cpu"
|
| 30 |
+
)
|
| 31 |
+
model.load_state_dict(checkpoint)
|
| 32 |
+
model.eval()
|
| 33 |
+
|
| 34 |
+
# Create processor
|
| 35 |
processor = AutoImageProcessor.from_pretrained(model_id)
|
| 36 |
return model, processor
|
| 37 |
|
|
|
|
| 45 |
try:
|
| 46 |
# Load model and processor (with caching)
|
| 47 |
model, processor = load_model()
|
|
|
|
| 48 |
|
| 49 |
# Process image
|
| 50 |
inputs = processor(image, return_tensors="pt")
|
| 51 |
|
| 52 |
# Get predictions
|
| 53 |
with torch.no_grad():
|
| 54 |
+
outputs = model(inputs.pixel_values)
|
|
|
|
| 55 |
|
| 56 |
# Get probabilities and classes
|
| 57 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)[0]
|
| 58 |
top_probs, top_indices = torch.topk(probs, k=5)
|
| 59 |
|
| 60 |
# Format results
|