Spaces:
Runtime error
Runtime error
specific tokenizer defined
Browse files- analyzer.py +4 -14
analyzer.py
CHANGED
|
@@ -3,6 +3,7 @@ from typing import Dict, Optional, Union
|
|
| 3 |
from transformers import (
|
| 4 |
AutoModelForSequenceClassification,
|
| 5 |
AutoModelForTokenClassification,
|
|
|
|
| 6 |
AutoTokenizer,
|
| 7 |
TokenClassificationPipeline,
|
| 8 |
)
|
|
@@ -34,19 +35,19 @@ class NewsAnalyzer:
|
|
| 34 |
model=AutoModelForSequenceClassification.from_pretrained(
|
| 35 |
category_model_name
|
| 36 |
),
|
| 37 |
-
tokenizer=
|
| 38 |
emojis=CATEGORY_EMOJIS,
|
| 39 |
)
|
| 40 |
self.fake_pipe = NewsPipeline(
|
| 41 |
model=AutoModelForSequenceClassification.from_pretrained(fake_model_name),
|
| 42 |
-
tokenizer=
|
| 43 |
emojis=FAKE_EMOJIS,
|
| 44 |
)
|
| 45 |
self.clickbait_pipe = NewsPipeline(
|
| 46 |
model=AutoModelForSequenceClassification.from_pretrained(
|
| 47 |
clickbait_model_name
|
| 48 |
),
|
| 49 |
-
tokenizer=
|
| 50 |
emojis=CLICKBAIT_EMOJIS,
|
| 51 |
)
|
| 52 |
self.ner_pipe = TokenClassificationPipeline(
|
|
@@ -67,14 +68,3 @@ class NewsAnalyzer:
|
|
| 67 |
"content": self.ner_pipe(content) if content else None,
|
| 68 |
},
|
| 69 |
}
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
if __name__ == "__main__":
|
| 73 |
-
analyzer = NewsAnalyzer(
|
| 74 |
-
category_model_name="elozano/news-category",
|
| 75 |
-
fake_model_name="elozano/news-fake",
|
| 76 |
-
clickbait_model_name="elozano/news-clickbait",
|
| 77 |
-
ner_model_name="dslim/bert-base-NER",
|
| 78 |
-
)
|
| 79 |
-
prediction = analyzer(headline="Lakers Won!")
|
| 80 |
-
print(prediction)
|
|
|
|
| 3 |
from transformers import (
|
| 4 |
AutoModelForSequenceClassification,
|
| 5 |
AutoModelForTokenClassification,
|
| 6 |
+
BertTokenizer,
|
| 7 |
AutoTokenizer,
|
| 8 |
TokenClassificationPipeline,
|
| 9 |
)
|
|
|
|
| 35 |
model=AutoModelForSequenceClassification.from_pretrained(
|
| 36 |
category_model_name
|
| 37 |
),
|
| 38 |
+
tokenizer=BertTokenizer.from_pretrained(category_model_name),
|
| 39 |
emojis=CATEGORY_EMOJIS,
|
| 40 |
)
|
| 41 |
self.fake_pipe = NewsPipeline(
|
| 42 |
model=AutoModelForSequenceClassification.from_pretrained(fake_model_name),
|
| 43 |
+
tokenizer=BertTokenizer.from_pretrained(fake_model_name),
|
| 44 |
emojis=FAKE_EMOJIS,
|
| 45 |
)
|
| 46 |
self.clickbait_pipe = NewsPipeline(
|
| 47 |
model=AutoModelForSequenceClassification.from_pretrained(
|
| 48 |
clickbait_model_name
|
| 49 |
),
|
| 50 |
+
tokenizer=BertTokenizer.from_pretrained(clickbait_model_name),
|
| 51 |
emojis=CLICKBAIT_EMOJIS,
|
| 52 |
)
|
| 53 |
self.ner_pipe = TokenClassificationPipeline(
|
|
|
|
| 68 |
"content": self.ner_pipe(content) if content else None,
|
| 69 |
},
|
| 70 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|